
RAPTOR: A VISUAL PROGRAMMING ENVIRONMENT FOR

TEACHING OBJECT-ORIENTED PROGRAMMING

Martin C. Carlisle
Department of Computer Science
United States Air Force Academy
carlislem@acm.org

ABSTRACT
Learning object-oriented programming usually involves
learning a programming language with a large amount of
complexity. Students very often spend more time dealing
with syntactical complexity than learning the underlying
principles of object-orientation or solving the problem.
Additionally, the textual nature of most programming
environments works against the learning style of the
majority of students. RAPTOR is an iconic programming
environment, designed specifically to help students visualize
classes and methods and limit syntactic complexity.
RAPTOR programs are created visually using a
combination of UML and flowcharts. The resulting
programs can be executed visually within the environment
and converted to Java.

1. INTRODUCTION
“Programming courses often focus on syntax and

the particular characteristics of a programming language,
leading students to concentrate on these relatively
unimportant details rather than the underlying algorithmic
skills…. Many of the languages used for object-oriented
programming in industry—particularly C++, but
to a certain extent Java as well—are significantly more
complex than classical languages. Unless instructors take
special care to introduce the material in a way that limits
this complexity, such details can easily overwhelm
introductory students.” [1]
In our experience, even when instructors try to focus on the
more fundamental concepts of classes and algorithms, they
are forced to spend a significant amount of class time on
syntactic difficulties that students encounter.

Furthermore, Felder [2] notes that most students
are visual learners and that instructors tend to present
information verbally. Between 75% and 83% of students
are visual learners [3,4]. Traditional programming
languages, textual in nature, provide a non-intuitive
framework for learning about object-orientation and
algorithmic thinking for the majority of our students.
Scanlan [5] showed that students understand algorithms
presented as flowcharts better than those presented in
pseudocode. Carlisle et. al [6] showed that, when given a
choice, 95% of students chose to express algorithms using

flowcharts rather than using a traditional programming
language, even when the majority of their instruction had
been done in a traditional language. Several studies [6,7,8]
showed that students performed better in courses when
taught with iconic programming languages.

Since there was a large body of evidence
supporting the idea that students understand programming
concepts better when given a visual representation, we
created a visual programming environment for introducing
object-oriented programming. RAPTOR allows students to
create algorithms by combining basic graphical symbols.
Students create their class hierarchy in a UML designer and
then represent method bodies as flowcharts. The resulting
programs can then be run in the environment, either step-
by-step or in continuous play mode. The environment
visually displays the location of the currently executing
symbol, as well as the contents of all variables. Also,
RAPTOR provides a simple graphics library, based on
AdaGraph [9]. Not only can the students create algorithms
visually, but also the problems they solve can be visual.

We are using RAPTOR in an Introduction to
Programming course. The course is primarily taught in
Java, and RAPTOR is used to visualize how objects work.
Students are able to create their designs in RAPTOR and
then convert the result to Java.

2. RELATED WORK
A significant number of visual or iconic

programming environments have been developed. SFC
(Structured Flow Chart) Editor [10] is a structured
flowchart editor by Tia Watts. SFC allows the user to
develop a structured flowchart, and always displays a
psuedocode representation of the flowchart in either a C++
or Pascal-like syntax. The user then copies and pastes the
textual representation into a text editor or integrated
development environment (IDE) and makes changes to get
a complete program. Although SFC generates C++ code, it
uses an imperative subset of the language.

Calloni and Bagert [8] developed a Windows-
based iconic programming language, BACCII++. They use
BACCII++ as a supplement to C++ in their CS1/CS2
sequence. BACCII++ supports the creation of classes and
methods; however, we were unable to find any place to
download or purchase the tool.

Visual Logic [11] is a commercial tool (~$31)
based on an academic project, FLINT [12]. Visual Logic
supports creation of programs with multiple procedures,
each of which is represented as a flowchart. The language
contains some built-in functions from Visual Basic. As
with SFC, Visual Logic does not support the creation of
classes.

Alice [13], by Carnegie Mellon University, is a
widely used 3D programming environment that supports
teaching introductory programming concepts in an object-
based way. Students create animations by placing objects
in a 3D virtual world, and then programming their
behavior. Although Alice uses object terminology, it does
not directly support inheritance [14].

Iconic Programmer [15] and B# [7] are two other
tools that allow students to create programs using
flowcharts. They support input/output, selection, looping,
and code generation but do not support subprograms.

RAPTOR is an open-source tool that fully
supports object-oriented programming, including
encapsulation, inheritance and polymorphism. RAPTOR
enables students to execute their algorithms within the
environment, rather than having to separately compile and
execute their programs. This means that debugging can be
done on the visual representation of the algorithm, rather
than the textual one and prevents having to use multiple
tools. This combination of features makes RAPTOR
unique, providing functionality not available with any other
currently existing educational programming environment.

3. RAPTOR
RAPTOR is written in a combination of Ada and

C#, and runs in the .NET Framework. RAPTOR begins by
opening a UML diagram, in which users can create classes,
interfaces and enumeration types and specify relationships
between them. The UML designer is based on the open
source tool NClass by Balazs Tihanyi [16]. An example
hierarchy created is shown in Figure 1.

The UML Designer allows users to create classes,
interfaces and enumeration types. These can be given the
Java access modifiers of public, private, protected or
default. Additionally, classes can be specified as abstract,
sealed, or static. A zoom bar allows the user to resize the
diagram as desired, or make it fit the current window. The
UML diagram can also be annotated with comments. Each
of these UML elements can be moved on the diagram.

The UML window also allows for the
specification of relationships between entities. Possible
relationships are inheritance, interface implementation,
class nesting, association, composition, aggregation and
dependency. As with the elements, the arrows indicating
the relationships can be moved on the diagram.

Figure 1: RAPTOR UML Designer.

Once a class has been created, users can add
methods and attributes by double-clicking on it. This
brings up the class editor (see Figure 2).

Figure 2: RAPTOR Class Editor.

The class editor provides a mechanism for directly

editing the Java syntax of the method, attribute, or

constructor. It also provides helpful GUI tools for students
unfamiliar with this syntax, and then builds the correct
syntax automatically. Modifying the syntax also updates
the GUI, so users can switch back and forth between them.
Users can order the attributes and methods in any way they
wish. Default orderings of alphabetical, by access and by
kind are provided.

Each method created in the class editor
corresponds to a method tab under the corresponding class
tab. The method editor begins with a blank workspace with
a start and end symbol. The user can then add symbols
corresponding to loops, selections, method calls, returns,
assignments, inputs and outputs by selecting from the
palette in the upper left corner and then inserting at an
appropriate point in the program (see Figure 3). For
convenience, a list of the attributes of the current class is
displayed on the left-hand side of the method editor.

Figure 3: RAPTOR Method Editor.

RAPTOR methods are forced to be structured.
Selections and loops must be properly nested, and each
loop has a single exit point. The loop structure is modeled
after the Java while loop. It is a pre-test loop, where the
loop body is executed while the condition is true. The
selection structure is modeled after the Java if-then-else.
The left-hand side of the selection is the “then” branch, and
the right-hand side the “else”.

The syntax used within a symbol is designed to be
flexible. Elements have been borrowed from both C and
Pascal-style languages. For example, either “**” or “^”
may be used as an exponentiation operation, and “&&” or
“and” may be used as a Boolean “and” operator. RAPTOR
enforces syntax checking on each symbol as it is edited.

Therefore, it is impossible to create a syntactically invalid
program. If the user enters “x+” as the right hand side of
an assignment, they will get an error message and be
required to fix the arithmetic expression before leaving the
assignment box.

Commenting is done by right-clicking on a
symbol and selecting “comment”. The comment appears as
a “talking bubble” next to the symbol. The comments can
be clicked and dragged to improve the aesthetic of the
program.

RAPTOR has over 80 built-in functions and
procedures which allow the student to generate random
numbers, perform trigonometric computations, draw
graphics (including circles, boxes, lines, etc.), and interface
with pointing devices. As seen in Figure 4, RAPTOR will
automatically suggest completions to procedure names.
Additionally, RAPTOR automatically suggests completion
for user-created attributes and methods.

Figure 4: Entering a procedure call.

During execution, the student can select to single
step through the program, or run continuously. The speed
of execution is adjustable by moving the slider shown at
the top of Figure 3. At each step, the currently executing
symbol is shown in green. Additionally, the state of all of
the variables is shown in a watch window at the bottom left
corner of the screen. This window shows the entire call
stack, and the heap. This allows instructors to easily
demonstrate recursion, and also the difference between
stack and heap variables.

To facilitate the transition to Java, we provide a
Java code generator. This translates the UML diagram and
all of the methods. This allows students to use RAPTOR to
do design work and even some implementation, and then
finish the code in a Java development environment. There
is currently no facility for “round-tripping” (i.e. making
modifications to the Java and then having those imported
back into the RAPTOR design).

4. FUTURE WORK
In the upcoming semesters, we plan to further

experiment with using RAPTOR to teach object-oriented
programming by refining and expanding the programming
assignments that we give to our students. In addition, we
will continue to modify and improve the RAPTOR
environment with richer sets of available functions and
procedures, enhanced Help facilities, and other ideas to be
gleaned from user feedback.

We would like to add the ability to import classes
from other files, and provide pre-compiled classes (in the
form of DLLs) that students can use in their programs. We
would also like to add code generators for other languages
(e.g. C++, C# and Visual Basic).

5. CONCLUSIONS
RAPTOR provides a simple environment for

students to experiment with object-oriented programming.
Instructors can use this to give students a visualization of
object-orientation, recursion and heap vs. stack memory
allocation. RAPTOR is the first free, open-source tool that
fully supports introducing object-oriented programming,
including the features of polymorphism and inheritance.

Prior results have indicated that students prefer
visual representations and are more successful learning
programming concepts when they are introduced using an
iconic or flowchart form. RAPTOR allows us to leverage
this success in introducing students to Java programming
and object-orientation.

We have provided a web site where other
universities can download RAPTOR. It is located at <URL
omitted for blind review>.

6. REFERENCES
[1] Computing Curricula 2001: Computer Science,

December 2001. Online [July 17, 2008]. Available at
http://www.acm.org/education/curricula-
recommendations.

[2] Cardellini, L. An Interview with Richard M. Felder.
Journal of Science Education 3(2), (2002), 62-65.

[3] Fowler, L., Allen, M., Armarego, J., and Mackenzie, J.
Learning styles and CASE tools in Software
Engineering. In A. Herrmann and M.M. Kulski (eds),
Flexible Futures in Tertiary Teaching. Proceedings of
the 9th Annual Teaching Learning Forum, February
2000. http://ccea.curtin.edu.au/tlf/tlf2000/fowler.html

[4] Thomas, L., Ratcliffe, M., Woodbury, J. and Jarman,
E. Learning Styles and Performance in the
Introductory Programming Sequence. Proceedings of
the 33rd SIGCSE Symposium (March 2002), 33-42.

[5] Scanlan, D. A. 1989. Structured Flowcharts
Outperform Pseudocode: An Experimental
Comparison. IEEE Software. 6, 5 (Sep. 1989), 28-36

[6] Carlisle, M. C., Wilson, T. A., Humphries, J. W., and
Hadfield, S. M. 2005. RAPTOR: a visual
programming environment for teaching algorithmic
problem solving. In Proceedings of the 36th SIGCSE

Technical Symposium on Computer Science Education
(St. Louis, Missouri, USA, February 23 - 27, 2005).
SIGCSE '05. ACM, New York, NY, 176-180.

[7] Cilliers, C., Calitz, A., and Greyling, J. 2005. The
effect of integrating an Iconic programming notation
into CS1. In Proceedings of the 10th Annual SIGCSE

Conference on innovation and Technology in

Computer Science Education (Caparica, Portugal, June
27 - 29, 2005). ITiCSE '05. ACM, New York, NY,
108-112.

[8] Calloni, B. A., Bagert, D. J., and Haiduk, H. P. 1997.
Iconic programming proves effective for teaching the
first year programming sequence. In Proceedings of

the Twenty-Eighth SIGCSE Technical Symposium on

Computer Science Education (San Jose, California,
United States, February 27 - March 01, 1997). J. E.
Miller, Ed. SIGCSE '97. ACM, New York, NY, 262-
266.

[9] vanDijk, J. AdaGraph. Online [July 31, 2008].
Available at

http://users.ncrvnet.nl/gmvdijk/adagraph.html.

[10] Watts, T. 2004. The SFC editor: a graphical tool for
algorithm development. J. Comput. Small Coll. 20, 2
(Dec. 2004), 73-85.

[11] Visual Logic. Online [July 31, 2008]. Available at:
http://www.visuallogic.org.

[12] Ziegler, U., and Crews, T. An Integrated Program
Development Tool for Teaching and Learning How to
Program. Proceedings of the 30th SIGCSE Symposium

(March 1999), 276-280.

[13] Alice. Online [July 31, 2008]. Available at:
http://www.alice.org.

[14] Baldwin, R. Alice Programming Tutorial. Online
[July 31, 2008]. Available at:
http://www.dickbaldwin.com/alice/Alice0150.htm.

[15] Chen, S. and Morris, S. 2005. Iconic programming for
flowcharts, java, turing, etc. In Proceedings of the 10th

Annual SIGCSE Conference on innovation and

Technology in Computer Science Education (Caparica,
Portugal, June 27 - 29, 2005). ITiCSE '05. ACM, New
York, NY, 104-107.

[16] NClass. Online [July 31, 2008]. Available at:
http://nclass.sourceforge.net.

