
Using YouTube to Enhance Student Class Preparation in
an Introductory Java Course

Martin C. Carlisle, Distinguished Educator
United States Air Force Academy
2354 Fairchild Dr, Suite 6G101

USAFA, CO 80840-6234
+1-719-333-3590

carlislem@acm.org

ABSTRACT

We provided 21 short YouTube videos for an Introduction to

Programming in Java course. Students were surveyed on how
often they watched the videos and did the readings, and how much
these activites contributed to their learning. When professors
reduced lecture time and increased lab time, students watched
videos and read significantly more. Their test scores were at least
as high and they indicated they would prefer to not have more
lecture. The YouTube videos also provided a source of outreach
for the university, drawing a large number of views, including the
13-17 year-old demographic.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education, H.5.1 [Information Interfaces and

Presentations]: Multimedia Information Systems – video, D.3.3
[Programming Languages]: Language Constructs and Features.

General Terms
Languages.

Keywords
YouTube, Java, videos.

1. INTRODUCTION
There seems to be a Catch-22 in teaching computer science.
Ideally, we would like to spend class time helping students engage
with the material and not simply lecturing; however, this requires
students to have some knowledge of the material before class. So
we assign readings, but repeated studies have shown that only 20-
30% of our students will have read before class starts [1]. As a
result, we often spend a significant amount of class time
summarizing and presenting the readings, but this simply
reinforces to students that they don’t need to prepare for class [2].
The internet has also changed the dynamic for teaching. More
and more lectures from prestigious universities are available
online (see, e.g. [3,4]). If we end up mostly lecturing with
students as passive learners in the classroom, why should they
choose to come to our classes, instead of watching lectures on the
same topics online?

This paper is authored by an employee(s) of the United States
Government and is in the public domain.

SIGCSE’10 ,March 10-13, 2010, Milwaukee, Wisconsin, USA.
ACM 978-1-60558-885-8/10/03.

A significant amount of ink has been spilled trying to figure out
how to get students to read more before class (e.g. [1,2,5,6]).
Generally, the ideas rely on negative motivation—you should
design your course so that students will not succeed if they don’t
read. This is accomplished by quizzing, random questioning and
monitoring compliance. There are, however, positive suggestions
on motivating the readings, selecting them more purposefully and
assigning readings closer to the due date.

The question left unasked, though, is “Is reading the best way for
students to prepare for class?” Since between 75% and 83% of
students are visual learners instead of verbal learners [7,8],
readings are not playing to their strengths. Additionally, some
faculty may even feel a bit hypocritical pushing student reading so
much when they managed to be very successful in academia
without reading before class, or sometimes even purchasing the
textbook.

After asking this question, and considering both the prevalent
learning style of our students and the fact that college students on
average have spent almost four hours a day watching videos and
less than an hour a day reading [9], we started exploring the idea
that videos might be a better way to get students to prepare for
class. We first asked a number of students, “if we asked you to
watch a short YouTube video before each class, would you do it?”
Unanimously, the students all said this would be a great idea.

Of course, saying you will do something is different than actually
doing it, but the positive response was sufficiently motivational to
put the effort in to make videos for our introductory Java course.
To make sure students would stay motivated and focused, our
goal for each video was to be less than five minutes in length. We
ended up averaging four minutes per video, with a median time of
three and a half minutes, and only two videos exceeding six
minutes. YouTube imposes a maximum length of 10 minutes,
which ensured even the longest video did not become exceedingly
long.

As it turned out, students did end up watching the videos, and we
capture some of their feedback in Section 4. Section 3 gives more
details on how we made the videos and their content. Work by
others on “inverted classrooms” and “hybrid classrooms” are
described in Section 2. At the end, Section 5 describes
possibilities for future work.

2. RELATED WORK
Using media outside the classroom to free classroom time for
discussion, experiments and labs is not a new idea. The “inverted
classroom” [10] basically swaps what are traditionally in-class

activities (lectures) with what are traditionally outside of class
activities (homework assignments). Lage, Platt and Tregalia used
this in an economics course. Students were supposed to watch a
recorded lecture before coming to class. The instructors began
each 75 minute class by answering student questions on the
videotaped lectures, then used a hands-on activity to demonstrate
the concept, followed by worksheets and review questions. They
reported that generally students liked this format. (Only two of
their 189 students requested a change to a lecture-oriented class,
and the students’ response to “I believe I learned more economics
with this classroom format” was 3.9 on a 5 point scale).

Kaner and Fiedler [11, 12] use the term “blended learning” to
describe their makeover of a course on software testing to move
lecture outside the classroom as videos. They describe how they
adapted their course (providing information on hardware and
software used, totaling $8000, and also the amount of work
involved—35 hours per each hour of videotaped lecture). They
do not provide detailed student feedback.

Day and Foley [13] ran an experiment with two sections of a
human-computer interaction course at Georgia Tech. In the
experimental section, classroom lecture time was replaced with
hands-on learning activities. Students watched 27 web lectures
(totaling 9 hours) to learn this content. Day and Foley made
strong efforts to control as many variables as possible in what
they called a “quasi-experiment” and found that students who
were in the experimental (web video) section (on average)
performed better on every course assignment.

Gannod, Burge and Helmick [14] applied these principles to a
software engineering curriculum at Miami University. They
provide the results of student surveys in a special topics course on
service-oriented architecture. In that course, they made 65
podcasts available to students (ranging in length from a few
minutes to 50 minutes). During the course meeting time,
instructors answered questions on the podcasts and then students
worked on assignments. Their results with this model were
mixed. 100% of students indicated that “podcast lectures are
helpful…and allow class time for assignments.” 86% agreed that
“we like the inverted class structure.” On the other hand, 92%
agreed that “the class shouldn’t rely so heavily on podcasts” and
56% agreed that the instructors should “use podcasts to
supplement class lectures instead of replacing them.”

Hybrid classes (a combination of distance learning and classroom
learning) also use videotaped lectures combined with in-class
activities [15]. Linsday [16] describes this as the “best of both
worlds”, but Reasons, Valadares and Slavkin [17] ran an
experiment where students in a hybrid class did worse than both
traditional and distance learners.

In each of these cases, the principle is to provide more time for
student interaction in the classroom by having students spend a
significant amount of time watching videotaped lectures before
coming to class. While we have a similar goal (making the
classroom more interactive), our approach is different. Rather
than having students watch a full lecture before coming to class,
we instead provide very short videos that give the highlights and
introduce students to the material. By keeping the videos short,
we hope to maintain a high level of motivation and viewing. This

was the first question students always asked when we were
sounding out the idea—“how long will they be?”

3. THE VIDEOS
We began the process of creating the videos by looking through
the syllabus for the introductory Java class and identifying 21
topics for which we would make videos. Eighteen of these were
language topics not specific to an Integrated Development
Environment (IDE). Those topics are:

1. Hello World 10. Reading a Text File
2. Basic Types and Objects 11. Writing a Text File
3. If Else Statements 12. Arrays
4. While Loops 13. 2D Arrays
5. For Loops 14. ArrayLists
6. Exceptions and Input 15. Creating a Class
7. Drawing a Picture 16. Java Constructors
8. Static Methods & Constants 17. Equality
9. Animation 18. Inheritance

For the drawing lessons, we used a variant of the DrawingPanel
class provided by Reges and Stepp [18]. We added mouse and
keyboard input, double-buffering and Javadoc style
documentation to the DrawingPanel class.

Three videos were specific to the NetBeans environment:

1. Getting Started with NetBeans
2. Using the NetBeans Debugger
3. Making a GUI in NetBeans

For each video, we began by writing a script. The script consisted
of the words that would be spoken by the narrator, the Java source
code for all the programs that would be discussed, and, for some
videos, animations done in PowerPoint.

The narrator never appears in the videos. We did not think being
able to see the narrator added value, and it also simplified the
creation of the video. We did not need to go to the expense of
purchasing a video camera, and the mechanics of making videos
via screen-capture is simpler than using a video camera.

For each video, we first recorded the audio. Getting quality
digital audio was the most difficult part of the project, especially
as we did not have much money to allocate to purchasing
hardware or software. We tried several different microphone and
software configurations. The built-in microphone in our Fujitsu T
series laptop generated audio files with too much background
noise. A Cyber Acoustics AC-102b headset (~$15) with
microphone did much better; however, there was still a certain
amount of audible buzzing. An RCA Digital Voice Recorder
VR5220 (~$40) had the least noise, but had the unfortunate side-
effect that it gave the narrator’s voice a pronounced lisp, even
using the highest quality setting on the recorder. After more
research, we purchased a Plantronics Audio 655 USB headset
(~$31) to avoid going through the microphone jack on the laptop.
This produced the best quality sound, but still required cleaning
up the audio with Audacity [19] using its “noise removal” feature
at a very low setting.

Getting high-quality video was much easier. We recorded the
video using a free screen capture program, VidShot Capturer [20].

Figure 1: YouTube Subtitler.

While listening to the audio, the narrator used the mouse and
keyboard to highlight text, progress through a PowerPoint
animation or run the programs. We did experiment with
recording the video and audio simultaneously, but found that this
generated more out-takes. Also, we determined it was easier for
us perform the actions in the video in time with pre-recorded
audio than it was to try to make the audio match with pre-
recorded video. Since there isn’t constant action in the video, it
was hard for the narrator to gauge the pace at which to read.
When arriving at the next action, there might be an awkward
pause if read too fast, or the narrator would suddenly realize he
was a sentence or two behind.

Windows Movie Maker [21], available as a free download,
enabled us to combine the video and audio files into a movie
suitable for uploading to YouTube. Additionally, we used it for
adding some captions in the videos and putting a title at the end.

We elected to use YouTube for hosting the videos because it was
simple and free. One unanticipated benefit was that a large
number of people from around the world have discovered and
viewed the videos. The video on Making a GUI in NetBeans is
the most popular, and averages 500 views a month from users
around the world. Thirty percent of these viewers are 13-17, and
55% are above 24 years old.

Although we do not have any hearing-impaired students in our
program, we do make the videos available to the world on
YouTube, so we added closed-captioning. YouTube Subtitler
[22] made this very easy. The first step is to split the script into
short lines or pairs of lines (40 characters or less) separated by
blank lines. You then paste this into the text window and push
synchronize.

As shown in Figure 1, you can now watch the movie while
advancing through the subtitles. Underneath the video on the
right is a lightning button. Simply push the button when a subtitle
should appear and release when it should leave. After working
through the whole video, you can download a text file with the
timings, or simply click a link to upload the subtitles directly to
the YouTube video (assuming you are already logged into
YouTube). Adding subtitles not only makes your videos available
to a wider audience, but also provides additional information to

Google about the content of the video, which can make it more
likely to be a search result.

For the content of the videos, we provide one or more Java
programs that are concrete examples of the concept being
introduced. Source code for the videos can be downloaded from
http://java.martincarlisle.com. The first video, “Hello World”,
simply walks through a Java program that prints “hello!” to the
screen, explaining each word that appears. Some introductions to
Java treat this as a “magical incantation” [18], delaying
explanation to later, but we have found that freshman and
sophomore college students are extremely uncomfortable with
that much abstraction right away, and need time before they can
reason about programs without having some idea of how each part
works.

Later videos walk through small Java programs that perform tasks
like printing the numbers from one to five, converting liters to
gallons, counting the number of words in a file, or sorting a set of
numbers. Each program is designed to demonstrate a particular
feature of the language (for loops, static methods, Scanners,
ArrayLists).

4. RESULTS
We used the set of videos in an Introduction to Programming in
Java course at the United States Air Force Academy. The Air
Force Academy is an undergraduate institution with an enrollment
of approximately 4,400 students. All of the students are
traditional students, live on campus, and are between 17 and 27
years old. The Introduction to Programming course is taken by
approximately 60 sophomores and juniors each year who are
majoring in computer science, computer engineering, or
information systems. The course is offered as a double-period lab
(i.e., there is a one hour lab period immediately following each
lecture hour in the same classroom). This is the first course in the
computer science major (during the freshman year students take
only core requirements). The videos were given to the students as
links to YouTube from the syllabus on the course web site.The
course had four offering times taught by 3 different professors.
All three professors have over ten years of experience as full-time
faculty members. Each of the four offerings used the same
syllabus and graded events. Professor 1 created and narrated the

videos. His course offering was first, and both Professor 2 and
Professor 3 observed his lectures before teaching theirs.

Professor 1 spent the least amount of time lecturing. He began
each class by highlighting both correct and incorrect examples
from student submissions on the previous labs. (Incorrect
examples were anonymized). He would answer questions, and
show very briefly the new concept. After this, he had the students
work on the day’s lab, and remained in the classroom to answer
questions.

Professor 2 gave the longest lectures. He presented each concept
in detail in the classroom before starting the labs. He taught two
of the four offerings. Professor 3’s style was somewhere between
that of Professor 1 and Professor 2. He did prepare PowerPoint
slides and gave a lecture at the beginning of each class, but it was
shorter than that of Professor 2.

Fifty-seven students across the four offerings completed a survey
providing feedback on the videos, the readings (from [18]) and the
lab activities. Students were asked how often they watched the
videos and read before class. For the videos, readings and labs,
they were asked on a five point Likert scale if each helped them
understand the material and if they were enjoyable. They were
also asked if they would like more lecture, and had open
responses for comments on the videos, readings and labs.

Figure 3: How often students watch videos before class

Figures 3 and 4 show how often students watched videos and read
before coming to class. Assuming the midpoints of the ranges,
Professor 1’s students watched videos most often—74% of the
time, compared to 34% for Professor 2 and 68% for Professor 3.
Professor 1’s students agreed more that the videos helped them
understand the material—4 vs. 3.56 and 3.57. They also reported
enjoying them more—3.5 vs. 2.84 and 3.35. Half of Professor 1’s
students reported watching videos more often than reading, and
half the same.

Professor 3’s students read most—71% of the time, vs. 59% for
Professor 1 and 39% for Professor 2. His students reported that
the readings helped their learning most—3.9 vs. 3.6 and 3.6. Four
students reported reading more than watching videos, five
watched videos more and five reported the same. Eight reported

the readings helped them understand the material more than the
videos (including two who watched videos more than they read).
Four reported the videos were more helpful.

Professor 2’s students prepared for class the least. 13 of 28
students reported they both watched videos and read less than
25% of the time. Eight read more than they watched videos, five
watched videos more and 15 were the same. Seven said videos
helped them understand more and five said the readings were
more helpful.

Figure 4: How often students read before class

Common to all three professors was that the students did not want
more lecture. Only one student each for both Professors 1 and 3
agreed that they “would prefer more lecture time.” (Four of
Professor 2’s students agreed with this statement, which was a bit
surprising, as his lectures were the longest. He did have 8
strongly disagree, a rate four times that of the other two
professors). Also, all four sections rated the labs as most helpful
(4.5, 4.1 and 4.9 respectively).

One surprising result was that Professor 1’s students were more
positive about the videos than the others. Eight of fourteen
students reported watching the videos 90-100% of the time and
their written feedback was the most enthusiastic—“I wish every
class did this” and “videos are better than reading.” We believe
this is because Professor 1 narrated the videos and the students
felt more connected to his voice. Professor 1 did not advertise the
videos any more than his colleagues. One suggestive comment
from a student in a different class was that they wanted to “see
who is talking,” which obviously doesn’t affect the content.

Professor 1’s students also scored highest on a programming test
(averaging 82.9%). Professor 3’s students averaged 78.5% and
Professor 2’s students averaged 73.0%. The entering GPAs were
2.95 for Professor 1, 2.91 for Professor 2 and 2.89 for Professor 3.
Since the class sizes were so small, the two-tailed t-test did not
allow us to reject the null hypothesis that the means were equal.
Nonetheless, the fact that Professor 2’s students did worse than
Professor 3’s despite having a higher incoming GPA is suggestive
that this might be related to the fact that they spent so much less
time preparing for class.

0%

10%

20%

30%

40%

50%

60%

70%

%
 o

f
S

tu
d

e
n

ts

% of time watched videos

Professor 1

Professor 3

Professor 2

0%

10%

20%

30%

40%

50%

%
 o

f
S

tu
d

e
n

ts

% of time did reading

Professor 1

Professor 3

Professor 2

5. CONCLUSIONS AND FUTURE WORK
Creating short videos can be a positive way to get students to
engage with the material before coming to class. Students
indicated the videos helped them learn the material. The
professors who reduced their lecture time found that students
prepared more for class not only in watching videos, but also in
doing the reading. These students preferred the shorter lectures
and having more time to work on programming in class. They
also performed better on the test (though the sample size was not
sufficient for this to be statistically significant). The videos are
not only helpful for an on-campus course, but placing them on
YouTube can be a simple outreach for your university (we had a
large number of views from 13-17 year olds).

One possible future experiment is having multiple different
narrators for the same videos. This would allow us to test how
important it is for students to have a connection to the narrator.
Another useful experiment would be to create videos for a larger
course, which would provide bigger sample sizes for the statistical
analysis.

6. REFERENCES
[1] Hobson, E. H. (2004). "Getting Students to Read: Fourteen

Tips." IDEA PAPER #40, Online [August 13, 2009].
Available at http://www.theideacenter.org/sites/
default/files/Idea_Paper_40.pdf.

[2] Brost, B. and Bradley, K. Student Compliance with
Assigned Reading: A Case Study. Journal of Scholarship of

Teaching and Learning 6,2 (Oct. 2006), 101-111.

[3] Stanford Engineering Everywhere. Online [August 13,
2009]. Available at: http://see.stanford.edu.

[4] MIT Open Courseware. Online [August 13, 2009].
Available at: http://ocw.mit.edu.

[5] Office of Support for Effective Teaching-The University of
New Mexico (2009). “How Do I Get My Students to
Complete Reading Assignments?” Online [August 13,
2009]. Available at:
http://www.unm.edu/~oset/SupportingDocuments/Getting%2
0students%20to%20read.pdf

[6] Weimer, M. “Getting Students to Read.” Online [August
13, 2009]. Available at:
http://www.teachingprofessor.com/articles/teaching-and-
learning/getting-students-to-read.

[7] Fowler, L., Allen, M., Armarego, J., and Mackenzie, J.
Learning styles and CASE tools in Software Engineering. In
A. Herrmann and M.M. Kulski (eds), Flexible Futures in
Tertiary Teaching. Proceedings of the 9th Annual Teaching
Learning Forum, February 2000.

[8] Thomas, L., Ratcliffe, M., Woodbury, J. and Jarman, E.
Learning Styles and Performance in the Introductory

Programming Sequence. Proceedings of the 33rd SIGCSE
Symposium (March 2002), 33-42.

[9] Kaiser Family Foundation (2005). “Generation M: Media in
the Lives of 8-18 Year-olds.” Online [August 13, 2009].
Available at:
http://www.kff.org/entmedia/entmedia030905pkg.cfm

[10] Lage, M., Platt, G., and Treglia, M. Inverting the Classroom:
A Gateway to Creating an Inclusive Learning Environment.
Journal of Economic Education 31,1 (Winter 2000), 30-43.

[11] Kaner, C. and Fiedler R. Inside Out: A Computer Science
Course Gets a Makeover. In Proceedings of the Association

for Educational Communication and Technology

International Conference, Orlando FL, October 2005.

[12] Kaner, C. and Fiedler, R. Blended Learning: A Software
Testing Course Makeover. In Proceedings of the 11th Sloan-

C International Conference on Asynchronous Learning

Networks, Orlando FL, November 2005.

[13] Day, J. and Foley, J. Evaluating a Web Lecture Intervention
in a Human-Computer Interaction Course. IEEE

Transactions on Education, 49,4, (November 2006), 420-
431.

[14] Gannod, G. C., Burge, J. E., and Helmick, M. T. 2008. Using
the Inverted Classroom to Teach Software Engineering. In
Proceedings of the 30th international Conference on

Software Engineering, Leipzig, Germany, May 2008, 777-
786.

[15] Hensley, G. Creating a Hybrid College Course: Instructional
Design Notes and Recommendations for Beginners. Journal

of Online Learning and Teaching, 1,2 (December 2005).

[16] Lindsay, E. The Best of Both Worlds: Teaching a Hybrid
Course. Academic Exchange Quarterly, 8,4 (Winter 2004),
16-19.

[17] Reasons, S., Valadares, K. and Slavkin, M. Questioning the
Hybrid Model: Student Outcomes in Different Course
Formats. Journal for Asynchronous Learning Networks, 9,1
(March 2005).

[18] Reges, S. and Stepp, M. Building Java Programs: A Back to

Basics Approach. Pearson Education, Boston, MA, 2008.

[19] Audacity. Online [August 24, 2009]. Available at:
http://audacity.sourceforge.net.

[20] VidShot Capturer. Online [August 21, 2009]. Available at:
http://www.geovid.com/VidShot_Capturer/.

[21] Windows Movie Maker. Online [August 24, 2009].
Available at: http://www.microsoft.com/windowsxp/
downloads/updates/moviemaker2.mspx.

[22] YouTube Subtitler. Online [August 24, 2009]. Available at:
http://yt-subs.appspot.com/.

