

Abstract—Dedicated laboratories have been used to provide a

secure testing environment. Given the prevalence of laptop
computers, the cost of maintaining a computer lab simply for
testing seems prohibitive. We present the RAPTOR assessment
environment, which allows students to take an exam on their own
laptop, without being able to access their hard drive or network
resources. We evaluate threats, and the level of security
provided by the assessment environment.

Index Terms—D.4.6 Security and Privacy Protection, D4.6c
Cryptographic controls, D4.6d Information flow controls, D.2.6.b
Graphical environments, D.1.7 Visual Programming.

I. INTRODUCTION

ROVIDING an accurate assessment of a student’s mastery of
course material is an important part of higher education.

Traditionally, this has been done through homework and
testing. Since homework is not done within a controlled
environment, it may not provide an accurate reflection of the
submitter’s understanding (either because of plagiarism, or
receiving excessive help on the assignment). The controlled
environment of tests yields a greater confidence that they
accurately assess student ability.

Programming tests are often done on computers, as students
are then able to check their answers by compiling and running
them. Previously, dedicated laboratories were used for
student testing. These machines could be specially configured
to guarantee that students did not have access to unauthorized
resources. Given the prevalence of laptops, many universities
have determined it is no longer cost-effective to maintain
dedicated labs. Therefore, we are faced with the problem of
guaranteeing that students do not have the ability to bring
extra materials into a test when they are doing it on their own
computer.

Manuscript received March 21, 2007.
Martin C. Carlisle is with the Department of Computer Science, United

States Air Force Academy, USAFA, CO 80840 USA (phone: 719-333-3590;
fax: 719-333-3338; e-mail: carlislem@acm.org).

Leemon C. Baird III is with the Department of Computer Science, United
States Air Force Academy, USAFA, CO 80840 USA (email
leemon@leemon.com).

Our secure assessment environment is built on top of
RAPTOR [1], a visual programming environment. It allows
tests where the student can write RAPTOR programs and test
them, but cannot access any other programs during the test,
and also cannot use any files on their hard drive or email or
other network resources.

Section 2 describes previous work on secure testing
software. We describe how to use the RAPTOR Assessment
Environment in Section 3. In Section 4, we describe the threat
model. Section 5 describes how our assessment environment
addresses these threats. Section 6 gives conclusions and
possibilities for future work.

II. PREVIOUS WORK
At least two companies distribute secure testing software.

Both Securexam™ [2] and Respondus Lockdown Browser™
[3] work on the same principle. They provide a web browser
that has been specifically configured to:

• fill the entire screen
• not allow switching applications
• not allow access to other network resources beside

the exam
We examined the documentation for both Respondus

Lockdown Browser and Securexam and evaluated the
Securexam demo [4]. Both of these systems rely on network
access, and are run from within a regular Windows session.
Our approach instead uses a restricted version of Windows
with no network drivers. We believe this restricted
environment has fewer moving parts, and is therefore easier to
secure. The Securexam FAQ claims “in the unlikely event of
a breakout, [Securexam] will detect and record the violation
on the encrypted exam.” We did not attempt to break the
encryption to validate this claim.

We did notice these features:
• disable the right-mouse button
• disable the function keys
• disable the task manager button from the screen

that appears when Ctrl-Alt-Del is pressed.
These changes make it difficult for a user to break out of

the testing environment.
Both of these packages require a per student, per semester

fee. Our solution is entirely based on software that is
available to universities at no cost (with the obvious exception

Design and Use of a Secure Testing
Environment on Untrusted Hardware

Martin C. Carlisle and Leemon C. Baird III

P

Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

3491-4244-1304-4/07/$25.00 ©2007 IEEE

of Microsoft Windows, which we assume each student will
have already bought). There is no cost to the university or the
student. Also, the environment will run on a wide range of
student laptops, requiring only a Windows machine with at
least 512MB of RAM.

Another possibility might be virtualization. VMWare ACE
[11] is an example of a software product that allows you to
create secure virtual desktops that are centrally managed.
While this would allow complete control of the virtual
environment, there is nothing that would prevent students
from accessing a non-virtual environment during the exam.

Finally, classroom management software such as
SynchronEyes [12] allows an instructor to monitor what
students are doing on their computers, as well as allowing the
instructor to block particular applications. SynchronEyes also
provides a testing capability. This testing is limited, however,
as it would not allow students to compile and run programs.
Further, if you unblock an IDE to allow this, then students
will be able to access any programs they have stored on their
hard drives.

III. USING THE RAPTOR ASSESSMENT ENVIRONMENT
Our goal was to allow the instructor to hand out a test on

paper, which asks the student to write several small programs,
then give the students an electronic environment in which to
write those programs during the test. In this way, there is no
additional burden on the instructor to create the test questions
in any particular format, or to enter them into any particular
electronic system. Since the test environment is not specific
to a particular test, it can be reused throughout the semester.

To start the RAPTOR Assessment Environment, the student
simply inserts the CD in the computer. The autoplay feature
immediately starts a 15 second countdown and reboots the
machine. If the student has autoplay disabled, or it otherwise
fails to reboot, they should simply restart their machine. Once
the machine reboots, it should boot off the CD into the
assessment environment. If not, they will need to set the
BIOS to boot from the CD first, or select the CD from a boot
menu. After it loads, it will automatically start a copy of
RAPTOR:

Figure 1: RAPTOR Assessment Environment

As shown in Figure 1, when the environment starts, it

displays a distinctive background; there are no desktop icons
and no “Start” button or taskbar (a “Go” button appears in the
lower left corner). This makes it easier for a proctor to ensure
that a student is using the environment.

Students complete assignments as usual. The main
differences a student will observe are that the file open and
file save dialogs have been replaced. Figure 2 shows the open
dialog, which allows the student to browse only the RAM
disk:

Figure 2: RAPTOR Assessment Open Dialog

The Save dialog similarly restricts the user to a single

folder, and allows only letters and digits in a filename. This
dialog is shown in Figure 3. Files are saved unencrypted to
the RAM Disk (so that the student can open and close files
during the test), but are also stored encrypted on the hard
drive. For example, problem1.rap would be saved on the hard
drive as “c:\problem1.rap.aes”. A message indicating where
the encrypted file was saved is displayed in the console
window each time the student saves their file.

Once the assessment is over, the student reboots into
ordinary Windows and submits their files either over the
network, or by giving them to their instructor on a USB flash
drive. In our setting, students may have to rush to their next
class, and therefore submit the files later. This creates a
period of time where students have access to the encrypted
solutions in a non-proctored setting. It also raises the
possibility that students might attempt to create encrypted
solution files after the exam but before turning it in.

Figure 3: RAPTOR Assessment Save Dialog

Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

3501-4244-1304-4/07/$25.00 ©2007 IEEE

IV. THREAT MODEL AND ASSUMPTIONS
We are particularly interested in guarding against the

following:
• Students being able to access their hard drive or

network resources during the exam
• Students being able to give their solutions to

another student to turn in
• Students being able to modify their solutions after

the assessment but before submitting them to the
instructor

• Students being able to take the test at a later time
and then submitting that work instead of what they
did during class

We assumed that students would take the test in a proctored
environment, but that network services would not necessarily
be available. Their solutions would be saved to their hard
drive, and they would later connect to the network and submit
their files.

We also assume that students will not be able to reverse
engineer and modify compiled executables, and will not be
able to crack either RSA keys [5] or AES encryption in
electronic codebook mode (ECB) [6]. Additionally, despite
MD5 having been broken by researchers [7], we still consider
it sufficiently secure for detecting if the environment files
have been tampered with. (We believe it would be simpler to
reverse engineer the compiled executable and remove the hash
checks than to create working system files that have an MD5
hash collision).

V. ADDRESSING THE THREATS
We now turn our attention to how students might attempt to

subvert the assessment environment, and what steps we take,
either through software or through the administration process,
to counter these threats. These techniques are not unique to
RAPTOR, and we anticipate very similar changes could be
made to other software programs to allow them to be used in a
testing environment.

A. Accessing Unauthorized Resources
We do not want students to be able to access old programs

from their hard drive, interact with each other through email
or instant messaging, or look for algorithms or information on
the internet. We provide a restricted version of Windows by
using Bart’s Preinstall Environment (BARTPE) [8]. BARTPE
allows us to create our own live CD version of Windows, with
custom menus and programs. Our restricted version of
Windows has no network drivers, which should prevent
network access. USB autoplay is disabled, which prevents
access to files on a USB flash drive. Additionally, we replace
the start menu with a menu that contains only options for
RAPTOR, killing a locked RAPTOR process, changing the
screen resolution, shutdown, and restart. This prevents the
user from starting any other programs. Also, since we have
rebooted into this environment, we are guaranteed that no

previously running programs will put windows on top of the
assessment environment while it is running.

There are three additional possibilities that need to be
considered. The first is whether the RAPTOR program has
features that would allow the student to either start other
programs or access the hard drive. The second is whether the
assessment environment is subject to tampering. The third is
whether virtualization can be used to defeat the system.

We prevent two ways that RAPTOR could be used to
access unauthorized resources. First, as described in Section
3, we replace the File Open and Save dialogs. This is
essential as the default dialogs allow browsing filenames
(which could be a source of information) and also also allow
other programs to be executed (such as cmd.exe, answers.doc
or iexplore.exe) by right clicking on their names. This is why
Securexam and Respondus Lockdown Browser both disable
right-clicking. Also, by restricting filenames to only letters
and digits, we avoid attacks such as entering “c:\” as a
filename and escaping the controlled environment. Second,
we disable the Help feature. It is unfortunate not to have help
in the environment, but HTMLHelp is insecure. The most
obvious insecurity is the “Jump to URL” menu option, which
can be used to access any arbitrary file (using a file URL).

The RAPTOR Assessment Environment does provide a
backdoor for instructor use to resolve issues that may arise
during administration. This allows an instructor to generate a
command prompt. To open the backdoor, one types
“emergency” in the textbox at the bottom of the console
window. This generates a challenge, as shown in Figure 4.

Figure 4: RAPTOR Assessment Open Dialog

If the correct response is entered, a command prompt

window will be opened. If not, a different random challenge
will be generated. The instructors are given instructions and
code for generating the response.

The risk of tampering is lessened by using MD5 hashes of
critical system files. When the environment starts, it
computes the MD5 hash of several critical system files. If any
of the hashes do not match, then the environment will not
start. This is only secure if we assume the students will not be
able to reverse-engineer the compiled executable, locate the
stored hash values and change them to match their tampered
files. This is obviously not foolproof, but we consider this an
acceptable level of risk. Additional countermeasures that can
be deployed against tampering include binary obfuscation,

Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

3511-4244-1304-4/07/$25.00 ©2007 IEEE

maintaining physical security on the Assessment Environment
CDs (thus reducing the probability someone will be able to get
a copy of the environment to reverse engineer) and changing
the RSA keys frequently (so that solutions created with
tampered copies of environments with the old key will be
detected).

Another possibility for defeating the system is to run it from
within a virtual machine. The RAPTOR Assessment
Environment contains code (from [9]) that detects the two
most prevalent virtual machine environments, VMWare and
Microsoft Virtual PC. We have verified this also detects
Microsoft Virtual Server. If run from within a virtual
machine, the program will still run, but will not encrypt any
files. The files will also have additional markers that indicate
the assessment environment was not used.

B. Providing Solutions to Others
The solutions a student creates during the examination are

stored encrypted on the hard drive and unencrypted only on
the RAM Disk. Once the test is completed, students are
required to reboot into normal Windows. The contents of the
RAM Disk will be lost, and they will only have encrypted
copies of their files. These files are encrypted using 128 bit
AES encryption in ECB mode. Rather than having a single
secret (which would then be present in the compiled
executable), the environment instead randomly generates a
128-bit key for each save. These are encrypted with an RSA
public key, and stored in the header of the saved file.
Instructors have access to a program containing the private
key, which first reads the key, decrypts it, and then decrypts
the remainder of the file using AES.

Figure 5: Recovering Files During the Exam

The main advantage to this hybrid scheme is that it allows

instructors to more easily recover student files if the student
has to reboot during the middle of the exam (e.g. to replace
the battery). In such a case, the instructor can use the
“emergency_keyhint” command, as shown in Figure 5, to find
the encrypted AES key. They can then decrypt it with the

“emergency_decrypt” command.
For example, to restore an encrypted file bob.rap,

“emergency_keyhint,c:\bob.rap.aes” will find
the encrypted AES key and decrypt this key. The command
“emergency_decrypt,c:\bob.rap.aes,b:\bob.r
ap,BA6DAB3028BCDFA9999F196D3C324EA7” will
restore the decrypted file on the RAM Disk so the student can
continue working on it. A program on the instructor machine
takes in the encrypted AES key and returns the decrypted key.

The security is primarily dependent on the security of the
RSA private key. Since each file has a randomly generated
AES key, obtaining one of these keys only allows reading that
single file. If, however, the RSA private key is compromised,
it can be used to decrypt all of the encrypted files.

It is possible that a tampered version of the assessment
environment could be designed that stores the unencrypted
data on the hard drive. This would allow access only to
solutions created using the tampered version. The
cryptography would still protect files generated with an
unmodified copy. As previously mentioned, MD5 hashes are
used to detect possible tampering.

C. Modifying the Completed Test
Once the exam is over, students only have access to

encrypted versions of their solutions. Since these solutions
have been encrypted using a randomly generated 128-bit AES
key, it should not be possible for a student to make any
changes without corrupting the file.

D. Redoing the Test Later
If students could obtain a copy of the testing environment,

they could reset their system clock and then take the test again
later, but before submitting their work.

Figure 6: Preventing Time-Shifting the Test

RAPTOR associates a globally unique identifier, or GUID,

(Microsoft’s implementation of the Universally Unique
Identifier standard [10]) with each file. We take advantage of
this feature to prevent this time shifting. As shown in Figure
6, a 32 bit section of the GUID is displayed in the titlebar of
the console window. Students are required to copy these

Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

3521-4244-1304-4/07/$25.00 ©2007 IEEE

numbers on the paper exam, which they then turn in before
they leave. On average, that means they would have to hit the
new button 2 billion times before they generate a file with the
same string.

Tampering is again a concern for this threat. If someone
reverse engineered the executable, they could replace the
generation of a random GUID with code that prompts for a
desired GUID. There are other features of the binary file
format that are unique to the assessment environment, but they
are not beyond a significant reverse-engineering effort.

VI. EXPERIENCE AND LESSONS LEARNED
The RAPTOR test environment was used in the core

computer science course throughout the Spring 2007 semester.
This is a required course for every student, regardless of
major. Over 600 students in 26 different sections each used
the environment for 3 separate in-class assessments. A
number of lessons were learned from this extensive real-world
testing of the environment.

Perhaps the most significant results were due to the fact that
the students were able to run and test their code during the
assessment. In the past, they have been required to write their
code on paper and hand it in. There were a number of
advantages that became apparent for allowing the students to
run their programs as they wrote them.

First, it is difficult for beginning students to get a program
right on the first try, especially when they have only had a few
lessons of instruction and have no prior programming
experience. Simple errors in the code that would lead to large
point deductions may not be visible to them at first glance, but
may be apparent after they’ve run the code and observed its
behavior. This doesn’t just lower the grades of all students
uniformly. There is a large amount of randomness involved.
It appears that the assessment was better able to judge the
students’ actual knowledge when they were allowed to run the
program during the assessment.

Second, an assessment better reflects what a student has
learned if it is similar to the homework exercises that preceded
it. When students were given homework assignments, they
were asked to write small programs, and of course they were
able to run them as they wrote them. Therefore, it was better
to have an assessment with a similar environment. Otherwise,
we would be testing a slightly different skill set than what was
taught.

Third, even for small problems, it is useful to teach the
students a spiral method of software development. They were
encouraged to write the smallest program that would execute,
and then repeatedly add one feature at a time, until the full
program was done. They were taught to test the software after
each spiral, which is good software engineering, but is
impossible to do when the entire program must be written out
on paper. Furthermore, when writing on paper, it is difficult
to insert new code into the middle of old code. This
discourages a spiral approach to development. So once again,

an assessment on paper ended up testing slightly different
skills than what were taught. An assessment in an executable
environment was much more effective.

Fourth, there was a noticeable difference in student
attitudes with the interactive environment. There was less
frustration, and the assessment had the appearance of being
more “fair”. The first three points show how the assessment
did a better job of assessing, but this fourth point regarding
morale is a useful side effect. The students are likely to work
harder when they perceive the experience as more enjoyable.

In these ways, the interactive assessment proved to be better
than the paper assessments that had been used in the past. In
addition, there were several lessons learned.

First, we discovered that it is useful to leave more time
before and after the assessment. Initially, we tried a 45-
minute assessment during the 53-minute class period. Those 8
minutes of non-assessment time turned out to be barely
enough for the students to come in, set up their computers,
and boot into the assessment environment. Any students who
had technical problems with their machines would find
themselves losing time. In the later assessments we switched
to a 40-minute assessment with 13 minutes extra. This
allowed most students to get set up without any problem.

Second, we found it was useful to encourage the students to
submit their results during class. There is a wireless network
in the classroom. It isn’t always reliable, so we had to design
the assessment environment to allow the students to submit
their encrypted (and unchangeable) files many hours after the
assessment. However, it was often difficult for them to
remember to do so, which caused frustration for the both the
students and the instructors. When we encouraged the
students to submit their files immediately after the test, that
made the entire process run more smoothly. Most of them
were able to use the wireless network. Most of the others
were able to use a USB flash memory to transfer the files to
the instructor’s computer. The very few students who could
do neither in the allotted time were able to submit them later
that evening. But since only a few students had to resort to
that, there were far fewer problems with people forgetting.
This was a large improvement.

Third, we found that it was very useful that the test
environment had a recognizable appearance to the START
menu button and the desktop image. This meant that after all
the students had booted into the environment, the instructor
could stand at the back of the room and see that all the
computers were in the special environment rather than in
normal windows. This fact, combined with the fact that the
CDs were always collected and counted at the end of the
period, made it significantly more difficult for a student to
make copies of the environment that could later be modified.
All indications were that the environment was secure in
practice. No security problems were seen for any of the 600
students during any of the 3 assessments.

In addition to these educational benefits and lessons

Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

3531-4244-1304-4/07/$25.00 ©2007 IEEE

learned, this environment reduced the workload for the
instructors.

The instructors were able to run a script that automatically
ran each student’s program, and reported whether it gave the
correct outputs for various inputs. This wasn’t sufficient by
itself to assign a grade. A program might be almost entirely
correct and yet get the answer wrong for every possible input.
However, it did save the instructor time, by focusing attention
on the important parts. If the program ran correctly, the
instructor could focus on programming style without worrying
about correctness. If the program ran incorrectly, the
instructor again didn’t have to untangle spaghetti code to
determine whether it was correct. The instructor would
already know it was incorrect, and could grade it more
quickly. Overall, this partial automation made grading more
than twice as fast as it would be with written programs on
paper.

In addition, both the instructors and students had tablet
computers. The instructors were able to write comments in
the margin of the code using a stylus on the tablet. It is very
convenient to be able to write comments and draw arrows to
the parts of the code being discussed. This made electronic
grading as easy as paper grading in that respect. Also, the
graded programs could be returned to the students
electronically, which saved the instructors some effort, and
allowed the students to get their feedback more quickly, rather
than having to wait until the next time the class met.

Overall the assessments using the new environment were
much better than the old paper-based assessments. They were
more accurate, they were less frustrating for the students and
instructors, and there were no security problems. The major
lessons learned were that it is useful to leave a little more time
before and after the assessment, and that it is useful to
encourage the students to submit their files as soon as possible
before they forget.

VII. CONCLUSIONS AND FUTURE WORK
We have described a secure solution for allowing students

to be tested on their own laptops by using a live CD to boot
into a restricted environment. We have provided a threat
model, and assessed how our countermeasures address these
risks. Students are prevented from accessing the network or
their hard drives, giving their solutions to others, modifying
them after the exam, or taking the exam at a later date. This
particular environment supports only creating RAPTOR
programs, but could be extended to provide more general
testing.

REFERENCES
[1] Carlisle, M., T. Wilson, J. Humphries and S. Hadfield. “RAPTOR: A

Visual Programming Environment for Teaching Algorithmic Problem
Solving”, 36th SIGCSE Technical Symposium on Computer Science
Education, Saint Louis MO, February 2005.

[2] SoftwareSecure. Securexam Browser. Online. Available at:
http://www.softwaresecure.com/browser.htm.

[3] Respondus. Respondus Lockdown Browser. Online. Available at:
http://www.respondus.com/products/lockdown.shtml.

[4] WebAssign. Securexam Demo. Online. Available at:
http://www.webassign.net/securebrowser.

[5] Rivest, R., Shamir, A. and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”, Communications of
the ACM, Vol. 21 (2), pp.120–126. 1978.

[6] Daemen, J. and V. Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard, Springer Verlag, 2002.

[7] Wang X. and H. Yu. “How to break MD5 and other hash functions”,
Eurocrypt 2005.

[8] Wikipedia. BARTPE. Online. Available at:
http://en.wikipedia.org/wiki/BartPE.

[9] CodeProject. Detect If Your Program is Running Inside a Virtual
Machine. Online. Available at:
http://www.codeproject.com/system/VmDetect.asp.

[10] International Telecommunication Union. Study Group 17 X.667.
“Information technology - Open Systems Interconnection - Procedures
for the operation of OSI Registration Authorities: Generation and
registration of Universally Unique Identifiers (UUIDs) and their use as
ASN.1 Object Identifier components”. Online. Available at:
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf.

[11] VMWare ACE description. Onlne. Available at:
http://www.vmware.com/products/ace.

[12] SyncronEyes description. Online. Available at:
http://www2.smarttech.com/st/en-
US/Products/SynchronEyes+Classroom+Management+Software/.

Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

3541-4244-1304-4/07/$25.00 ©2007 IEEE

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

