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ABSTRACT 
In this paper, we describe a neural network program that was 
originally developed in C, then ported to Ada 2005.  We explain 
several simple modifications to the Ada code that reduce the 
overhead from 76% to 0%.  These modifications could provide 
significant performance gains to other applications, allowing them 
to combine the safety of Ada with the speed of C. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Contructs and 
Features – Ada, C.  

C.4 [Performance of Systems]: Performance Attributes.  

I.2.6 [Artificial Intelligence]: Learning – connectionism and 
neural nets.  

General Terms 
Performance, Languages. 

Keywords 
Ada, C, Neural Networks, Benchmarking. 

1. INTRODUCTION 
C is generally perceived as a highly portable and extremely 
efficient programming language.  Ada, while known for its safety, 
often suffers from a perception that its use creates a significant 
performance penalty.  Tennebo [1], e.g. while touting that Ada 
provides the efficiency of C with the elegance of Java, concludes 
that Ada is about 19% slower than C++.  Other authors have 
published reports that are more favorable for Ada.  Weiskirchner 
[2] reports additional overhead of 21%; however, analyzing his 
data in the appendices, one notes that Ada often outperforms C 
when the runtime checks are turned off.  Corlan [3] reports 
identical times for C and Ada, although it appears he had to hand-
tune his C code in order to obtain this result.   

We implemented a neural network program in C because we 
knew C would be widely available on high-performance 
computers.  The C program required a lot of debugging for subtle 
pointer errors.  Since there was still some concern that subtle 
errors might remain in the code and we wondered whether we 
were truly getting better performance by using C, we 
reimplemented the code in Ada.   

In Section 2, we describe the neural network and why it requires 
such a complicated data structure.  In Section 3, we explain how 
we modified the code in translating it to Ada.  Section 4 describes 
how we made simple changes to the Ada implementation to 
eliminate the additional overhead.  Section 5 provides conclusions 
and insights for future projects. 

2. BACKGROUND 
Neural networks are a powerful form of machine learning that is 
ideal for pattern recognition problems such as machine vision.  In 
simple supervised learning, the system is repeatedly given an 
input (a list of real numbers) and then calculates an output 
(another such list).  During learning, the output is compared to a 
known “desired value”, and various parameters within the 
network are modified so the actual output more closely 
approximates the desired output.  After several hours of training 
this way, the system will often learn the underlying patterns, and 
be able to answer questions it has never seen before.   

Neural network algorithms tend to be fairly simple, and so result 
in short programs with simple data structures.  Unfortunately, we 
were developing a convolutional neural network with a self-
organizing algorithm, using second-order techniques to speed 
learning.  This meant that both the algorithms and the data 
structures were fairly complex, with much pointer arithmetic in 
the original C implementation. 

In a neural network, the network is designed to implement a 
function that takes several inputs and transform them into several 
outputs, all of which are real numbers.  The network is structured 
as a set of neurons, each of which takes several real-valued 
signals as input, and returns one signal as output.  The set of 
neurons and their connections form an acyclic graph, whose 
structure must be represented efficiently.   

In addition, there are many weights, which are adjustable, real-
valued parameters that are changed during learning.  As these are 
adjusted, they cause the function computed by the network as a 
whole to eventually approximate the desired function.  Each 
neuron uses several of the weights when computing its output.  In 
a convolutional network, each weight is used by several different 
neurons.  This causes the pattern of which neuron uses which 
weight to be very complicated.   
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Overall, the program must keep track of quite a few things.  The 
network is made of some number of layers.  Each layer contains 
some number of neurons, and different layers can have different 
numbers of neurons.  Each neuron takes some number of inputs 
from the previous layer, and uses them to calculate an output that 
will be sent to the next layer.  The neurons in each layer are 
viewed as forming a list of 2D images, with each neuron’s output 
forming one pixel in one of the images.  In the next layer, a given 
neuron receives inputs from a set of rectangular windows, one for 
each image.  A given window will feed into several different 
neurons in the next layer.  Some neurons in a given layer share 
identical sets of weights, and some neurons use different weights.  
As a result, the pattern of connections is complicated.   

In addition to keeping track of this complicated topology, the 
network must also keep track of a host of different derivatives.  It 
must calculate the first and second derivatives of the error in the 
output of the network with respect to each weight.  It must also 
store an exponentially-weighted average of recent first and second 
derivatives for each weight.   

Most of the computation time in the program is spent in basic 
arithmetic operations of adding, multiplying, and occasionally 
evaluating hyperbolic tangent functions.  We originally wrote the 
software in highly-optimized C code that took full advantage of 
the language’s pointer arithmetic, which achieves faster code 
through the use of unsafe (and often unintelligible) coding hacks.  
We then decided to translate this code into Ada, both as an aid to 
debugging, and to see how the speed of the code might compare. 

3. CODE COMPARISON 
Most of the program was a very straightforward translation from 
C to Ada, performed manually by the authors.  However, in a 
couple of cases we diverged from the C code. 

3.1 Pointer Arithmetic 
The record for a single neuron in the network had the following 
description in C: 

struct neuron_data { 
 unsigned int number_inputs; 
 double **input_signals;  

// array of pointers to input signals 
int *input_signals_indices; 

 double *input_weights;   
// pointer to weights then bias 

 double *output_signal;   
// pointer to output signal 

}; 
 

In Ada, we instead chose to represent the record as follows: 

type Integer_Array is array (Integer 
    range <>) of Integer; 
type Integer_Array_Ptr is access all 

    Integer_Array; 
type Neuron_Data is record 
    Number_Inputs : Natural; 
    Input_Signals : Integer_Array_Ptr; 
    Input_Weights : Natural; 
    Output_Signal : Natural; 
end record; 
 

In particular, rather than storing pointers into the signals and 
weights arrays, we instead stored the indices of these values.  The 
reason for this choice was that when propagating the signal 
backwards, we need to know these indices.  In C, we obtain them 
from doing pointer subtraction, as: 

topology->weights_error_derivative[ 
(topology->neurons[j].input_weights-
topology->weights)+k] = …; 

Here we subtract the pointer to the input_weight minus the 
pointer to the weights array to get the index of this particular 
weight, which we then use as an index into the 
weights_error_derivative array.  In Ada, pointer subtraction is 
awkward to implement (requiring the use of an interface package, 
or unchecked conversions).  Therefore, we simply stored the 
indices instead.  So, when forward propagating, in C, we would 
use: 

temp += (     
*(topology->neurons[j].input_signals[k])) 
*topology->neurons[j].input_weights[k]; 

But in Ada we see instead: 

Temp := Temp +      
Topology.Signals(Topology.Neurons(J).
 Input_Signals(K))*               
Topology.Weights(Topology.Neurons(J).
 Input_Weights+K); 

3.2 memcpy/memset 
A second key difference was that the C code frequently used 
memcpy and memset.  Marcus Kuhn [4] notes that,  in Ada, made 
these routines “have been made redundant”.  So, rather than 
doing: 

memcpy(input_p3,&topology->signals[0], 
input_size); 

we instead simply use Ada’s array slicing, as: 

Input_p3 := Topology.signals(0 .. 
Input_Size-1); 

And for initializing an array to all zero, we use: 

Topology.Weights_Error_Derivative.all := 
(others => 0.0); 

instead of: 

memset(topology-> 
accumulate_weights_error_derivative,0, 
topology->number_weights*sizeof(double)); 

 

 
 



3.3 File I/O 
C uses the routines fopen, fseek, fread, fclose to read data from an 
untyped binary stream.  Since our input data consisted of a long 
sequence of bytes, we chose to use Ada.Direct_IO instantiated on 
a modular type corresponding to a byte. 

type Byte is mod 256; 
package Byte_IO is new Ada.Direct_IO(Byte); 

4. MAKING ADA EFFICIENT 
Our first test consisted of running the neural network for 400 
iterations of forward and backward propagation.  We used GCC 
version 4.1.2 on a Gateway tablet with a 1.86GHz Pentium M 
processor and 1GB of memory.  For Ada, we used GNATPRO 
6.0.1.  In both cases we turned on optimization (level 2).  Table 1 
shows the first set of results we obtained. 

Table 1: Timings for 400 iterations (first try) 

Compiler Time Overhead 

gcc  (-O2) 29 secs 0% 

gnat (–O2) 51 secs 75.9% 

gnat (-O2 –gnatp) 38 secs 31% 

 

The –gnatp flag turns off run-time checks.  This seemed a fairer 
comparison, as the run-time checks are useful during debugging, 
but once the code has been debugged, they are no longer required.  
We were disappointed to discover that Ada ran significantly 
slower.  Not only did we encounter a significant performance loss 
during the run, but the I/O phase before the iterations began took 
8 seconds in the Ada program, and less than a second in the C 
program.  To uncover where the extra time was being spent, we 
used the GNU Profiler (available for both GCC and GNAT by 
simply adding the –pg flag during compilation). 

4.1 memset/memcpy 
Surprisingly, we discovered a huge difference between the C and 
Ada code on initializing the derivative arrays to zero.  The 
profiler reported the Ada program was spending more time on 
these routines, and we confirmed that doing 10,000 memsets in C 
took 9 seconds, while the array initializations in Ada required 16 
seconds.   

Initializing an array to the floating-point number 0.0 is a special 
case, as its binary representation is all zeroes.  Therefore a 
memset with 0 can be used in C (memset can only be used when 
every byte is going to be the same, which will not be the case for 
most integer or floating-point values). 

The GNAT Ada compiler doesn’t recognize this special case, and 
instead generates a loop which writes the floating point number 
0.0 to each element of the array.  However, we can get a type-safe 
and fast clearing of the array as follows: 

procedure Memset ( 
      Mem_At     : Chars_Ptr; 
      With_Value : Integer; 
      How_Many   : Size_T); 
pragma Import (Intrinsic, Memset, 
   "__builtin_memset"); 

function To_Chars_Ptr is 
   new Ada.Unchecked_Conversion ( 
   System.Address, Chars_Ptr); 
 
procedure Clear (A : in out  
   Long_Float_Array) is 
begin 
   Memset(To_Chars_Ptr( 
      A(A'first)'address), 
      0,Size_T(8*A'Length)); 
end Clear; 
pragma Inline(Clear); 
 

Using this Clear procedure, we are guaranteed never to 
accidentally do a set with an incorrect size.   

We similarly found a builtin_memcpy available in GCC.  From 
this, we created the following safe copy procedure: 

procedure Memcpy ( 
      Dest     : Chars_Ptr; 
      Source   : Chars_Ptr; 
      How_Many   : Size_T); 
pragma Import (Intrinsic, Memcpy, 
   "__builtin_memcpy"); 
procedure Copy ( 
   To : in out Long_Float_Array; 
   From : in Long_Float_Array) is 
begin 
   pragma Assert(To'Length=From'Length); 
   Memcpy(To_Chars_Ptr( 
      To(To'first)'address), 
      To_Chars_Ptr(From(From'first) 
         'address), 
      Size_T(8*From'Length)); 
end Copy; 
pragma Inline(Copy); 
 

Since the amount of overhead was much smaller, we increased the 
number of iterations to 1400 to make it more evident. 

 

Table 2: Timings for 1400 iterations (change Clear/Copy) 

Compiler Time Overhead 

gcc  (-O2) 100 secs 0% 

gnat (–O2 –gnatp   
-gnatN) w/Clear 

108 secs 8% 

gnat (same) with 
Clear, Copy 

107 secs 7% 

 

Using the builtin_memset was a big improvement; however, the 
builtin_memcpy didn’t make much of a difference.  At this point, 
the overhead is fairly acceptable, but we still wanted to get the 
Ada code to perform as well as the C implementation. 

4.2 Storing pointers 
As noted in Section 3.1, we elected to store indices into arrays 
rather than pointer elements because we needed to keep track both 
of the element as well as its index.  After profiling, we discovered 
(not surprisingly) that the loop containing the code at the end of 
Section 3.1 ran slightly slower.  This is because each reference to 



the signals array requires an addition to a pointer.  To solve this, 
we decided to store both the indices and pointers directly to the 
elements.  Once we did this, the Ada code ran in the same amount 
of time as the C code. 

Table 3: Timings for 1400 iterations (all changes) 

Compiler Time Overhead 

gcc  (-O2) 100 secs 0% 

gnat (–O2 –gnatp   
-gnatN) 

100 secs 0% 

 

To make the comparison fair, we also added an array of indices to 
the C code (to avoid having to do the pointer subtraction).  This 
showed no appreciable change in the timing of the C code. 

4.3 File I/O 
Since we generally run the program for many hours, the extra 
eight seconds of File I/O at the start was not a big concern.  
However, we nonetheless pursued the question of how to get the 
Ada code to do I/O faster.  We first considered using 
Ada.Streams.  The default Stream’Read in Ada would expect to 
read the bounds of an unconstrained array, then its elements.  The 
bounds weren’t present in our data files.  Since we wanted to 
maintain the file format of the C program, and we didn’t want to 
go to the trouble of implementing our own stream reader, we 
chose instead to use the Interface.C_Streams package provided by 
GNAT.  Since we were already using GNAT-specific routines for 
clearing and copying arrays, this seemed like a reasonable design 

choice.  It involved a very straightforward translation of the C I/O 
routines.  Once completed, the I/O section took less than a 
second, as did the C version. 

5. CONCLUSIONS 
Although Ada often has a reputation of being less efficient than 
C, we discovered that with a small amount of work (less than one 
man-day of effort for 1226 non-comment non-blank lines of 
code), we were able to generate an Ada program that was just as 
efficient as C.  Furthermore, we uncovered a subtle bug in the C 
program, where it was writing one byte past the end of an array. 

Consequently, we conclude that Ada provides superior safety to 
C, while maintaining a similar level of performance. 
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