
Timing Neural Networks in C and Ada
Martin C. Carlisle, Senior Member

Department of Computer Science
United States Air Force Academy

USAFA, CO 80840
00+1-719-333-3590
carlislem@acm.org

Leemon C. Baird III
Department of Computer Science
United States Air Force Academy

USAFA, CO 80840
00+1-719-333-3590

leemon@leemon.com

ABSTRACT
In this paper, we describe a neural network program that was
originally developed in C, then ported to Ada 2005. We explain
several simple modifications to the Ada code that reduce the
overhead from 76% to 0%. These modifications could provide
significant performance gains to other applications, allowing them
to combine the safety of Ada with the speed of C.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – Ada, C.

C.4 [Performance of Systems]: Performance Attributes.

I.2.6 [Artificial Intelligence]: Learning – connectionism and
neural nets.

General Terms
Performance, Languages.

Keywords
Ada, C, Neural Networks, Benchmarking.

1. INTRODUCTION
C is generally perceived as a highly portable and extremely
efficient programming language. Ada, while known for its safety,
often suffers from a perception that its use creates a significant
performance penalty. Tennebo [1], e.g. while touting that Ada
provides the efficiency of C with the elegance of Java, concludes
that Ada is about 19% slower than C++. Other authors have
published reports that are more favorable for Ada. Weiskirchner
[2] reports additional overhead of 21%; however, analyzing his
data in the appendices, one notes that Ada often outperforms C
when the runtime checks are turned off. Corlan [3] reports
identical times for C and Ada, although it appears he had to hand-
tune his C code in order to obtain this result.

We implemented a neural network program in C because we
knew C would be widely available on high-performance
computers. The C program required a lot of debugging for subtle
pointer errors. Since there was still some concern that subtle
errors might remain in the code and we wondered whether we
were truly getting better performance by using C, we
reimplemented the code in Ada.

In Section 2, we describe the neural network and why it requires
such a complicated data structure. In Section 3, we explain how
we modified the code in translating it to Ada. Section 4 describes
how we made simple changes to the Ada implementation to
eliminate the additional overhead. Section 5 provides conclusions
and insights for future projects.

2. BACKGROUND
Neural networks are a powerful form of machine learning that is
ideal for pattern recognition problems such as machine vision. In
simple supervised learning, the system is repeatedly given an
input (a list of real numbers) and then calculates an output
(another such list). During learning, the output is compared to a
known “desired value”, and various parameters within the
network are modified so the actual output more closely
approximates the desired output. After several hours of training
this way, the system will often learn the underlying patterns, and
be able to answer questions it has never seen before.

Neural network algorithms tend to be fairly simple, and so result
in short programs with simple data structures. Unfortunately, we
were developing a convolutional neural network with a self-
organizing algorithm, using second-order techniques to speed
learning. This meant that both the algorithms and the data
structures were fairly complex, with much pointer arithmetic in
the original C implementation.

In a neural network, the network is designed to implement a
function that takes several inputs and transform them into several
outputs, all of which are real numbers. The network is structured
as a set of neurons, each of which takes several real-valued
signals as input, and returns one signal as output. The set of
neurons and their connections form an acyclic graph, whose
structure must be represented efficiently.

In addition, there are many weights, which are adjustable, real-
valued parameters that are changed during learning. As these are
adjusted, they cause the function computed by the network as a
whole to eventually approximate the desired function. Each
neuron uses several of the weights when computing its output. In
a convolutional network, each weight is used by several different
neurons. This causes the pattern of which neuron uses which
weight to be very complicated.

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
SIGada’07, November 4–9, 2007, Fairfax, Virginia, USA.
ACM 978-1-59593-876-3/07/0011.

Overall, the program must keep track of quite a few things. The
network is made of some number of layers. Each layer contains
some number of neurons, and different layers can have different
numbers of neurons. Each neuron takes some number of inputs
from the previous layer, and uses them to calculate an output that
will be sent to the next layer. The neurons in each layer are
viewed as forming a list of 2D images, with each neuron’s output
forming one pixel in one of the images. In the next layer, a given
neuron receives inputs from a set of rectangular windows, one for
each image. A given window will feed into several different
neurons in the next layer. Some neurons in a given layer share
identical sets of weights, and some neurons use different weights.
As a result, the pattern of connections is complicated.

In addition to keeping track of this complicated topology, the
network must also keep track of a host of different derivatives. It
must calculate the first and second derivatives of the error in the
output of the network with respect to each weight. It must also
store an exponentially-weighted average of recent first and second
derivatives for each weight.

Most of the computation time in the program is spent in basic
arithmetic operations of adding, multiplying, and occasionally
evaluating hyperbolic tangent functions. We originally wrote the
software in highly-optimized C code that took full advantage of
the language’s pointer arithmetic, which achieves faster code
through the use of unsafe (and often unintelligible) coding hacks.
We then decided to translate this code into Ada, both as an aid to
debugging, and to see how the speed of the code might compare.

3. CODE COMPARISON
Most of the program was a very straightforward translation from
C to Ada, performed manually by the authors. However, in a
couple of cases we diverged from the C code.

3.1 Pointer Arithmetic
The record for a single neuron in the network had the following
description in C:

struct neuron_data {
 unsigned int number_inputs;
 double **input_signals;

// array of pointers to input signals
int *input_signals_indices;

 double *input_weights;
// pointer to weights then bias

 double *output_signal;
// pointer to output signal

};

In Ada, we instead chose to represent the record as follows:

type Integer_Array is array (Integer
 range <>) of Integer;
type Integer_Array_Ptr is access all

 Integer_Array;
type Neuron_Data is record
 Number_Inputs : Natural;
 Input_Signals : Integer_Array_Ptr;
 Input_Weights : Natural;
 Output_Signal : Natural;
end record;

In particular, rather than storing pointers into the signals and
weights arrays, we instead stored the indices of these values. The
reason for this choice was that when propagating the signal
backwards, we need to know these indices. In C, we obtain them
from doing pointer subtraction, as:

topology->weights_error_derivative[
(topology->neurons[j].input_weights-
topology->weights)+k] = …;

Here we subtract the pointer to the input_weight minus the
pointer to the weights array to get the index of this particular
weight, which we then use as an index into the
weights_error_derivative array. In Ada, pointer subtraction is
awkward to implement (requiring the use of an interface package,
or unchecked conversions). Therefore, we simply stored the
indices instead. So, when forward propagating, in C, we would
use:

temp += (
*(topology->neurons[j].input_signals[k]))
*topology->neurons[j].input_weights[k];

But in Ada we see instead:

Temp := Temp +
Topology.Signals(Topology.Neurons(J).
 Input_Signals(K))*
Topology.Weights(Topology.Neurons(J).
 Input_Weights+K);

3.2 memcpy/memset
A second key difference was that the C code frequently used
memcpy and memset. Marcus Kuhn [4] notes that, in Ada, made
these routines “have been made redundant”. So, rather than
doing:

memcpy(input_p3,&topology->signals[0],
input_size);

we instead simply use Ada’s array slicing, as:

Input_p3 := Topology.signals(0 ..
Input_Size-1);

And for initializing an array to all zero, we use:

Topology.Weights_Error_Derivative.all :=
(others => 0.0);

instead of:

memset(topology->
accumulate_weights_error_derivative,0,
topology->number_weights*sizeof(double));

3.3 File I/O
C uses the routines fopen, fseek, fread, fclose to read data from an
untyped binary stream. Since our input data consisted of a long
sequence of bytes, we chose to use Ada.Direct_IO instantiated on
a modular type corresponding to a byte.

type Byte is mod 256;
package Byte_IO is new Ada.Direct_IO(Byte);

4. MAKING ADA EFFICIENT
Our first test consisted of running the neural network for 400
iterations of forward and backward propagation. We used GCC
version 4.1.2 on a Gateway tablet with a 1.86GHz Pentium M
processor and 1GB of memory. For Ada, we used GNATPRO
6.0.1. In both cases we turned on optimization (level 2). Table 1
shows the first set of results we obtained.

Table 1: Timings for 400 iterations (first try)

Compiler Time Overhead

gcc (-O2) 29 secs 0%

gnat (–O2) 51 secs 75.9%

gnat (-O2 –gnatp) 38 secs 31%

The –gnatp flag turns off run-time checks. This seemed a fairer
comparison, as the run-time checks are useful during debugging,
but once the code has been debugged, they are no longer required.
We were disappointed to discover that Ada ran significantly
slower. Not only did we encounter a significant performance loss
during the run, but the I/O phase before the iterations began took
8 seconds in the Ada program, and less than a second in the C
program. To uncover where the extra time was being spent, we
used the GNU Profiler (available for both GCC and GNAT by
simply adding the –pg flag during compilation).

4.1 memset/memcpy
Surprisingly, we discovered a huge difference between the C and
Ada code on initializing the derivative arrays to zero. The
profiler reported the Ada program was spending more time on
these routines, and we confirmed that doing 10,000 memsets in C
took 9 seconds, while the array initializations in Ada required 16
seconds.

Initializing an array to the floating-point number 0.0 is a special
case, as its binary representation is all zeroes. Therefore a
memset with 0 can be used in C (memset can only be used when
every byte is going to be the same, which will not be the case for
most integer or floating-point values).

The GNAT Ada compiler doesn’t recognize this special case, and
instead generates a loop which writes the floating point number
0.0 to each element of the array. However, we can get a type-safe
and fast clearing of the array as follows:

procedure Memset (
 Mem_At : Chars_Ptr;
 With_Value : Integer;
 How_Many : Size_T);
pragma Import (Intrinsic, Memset,
 "__builtin_memset");

function To_Chars_Ptr is
 new Ada.Unchecked_Conversion (
 System.Address, Chars_Ptr);

procedure Clear (A : in out
 Long_Float_Array) is
begin
 Memset(To_Chars_Ptr(
 A(A'first)'address),
 0,Size_T(8*A'Length));
end Clear;
pragma Inline(Clear);

Using this Clear procedure, we are guaranteed never to
accidentally do a set with an incorrect size.

We similarly found a builtin_memcpy available in GCC. From
this, we created the following safe copy procedure:

procedure Memcpy (
 Dest : Chars_Ptr;
 Source : Chars_Ptr;
 How_Many : Size_T);
pragma Import (Intrinsic, Memcpy,
 "__builtin_memcpy");
procedure Copy (
 To : in out Long_Float_Array;
 From : in Long_Float_Array) is
begin
 pragma Assert(To'Length=From'Length);
 Memcpy(To_Chars_Ptr(
 To(To'first)'address),
 To_Chars_Ptr(From(From'first)
 'address),
 Size_T(8*From'Length));
end Copy;
pragma Inline(Copy);

Since the amount of overhead was much smaller, we increased the
number of iterations to 1400 to make it more evident.

Table 2: Timings for 1400 iterations (change Clear/Copy)

Compiler Time Overhead

gcc (-O2) 100 secs 0%

gnat (–O2 –gnatp
-gnatN) w/Clear

108 secs 8%

gnat (same) with
Clear, Copy

107 secs 7%

Using the builtin_memset was a big improvement; however, the
builtin_memcpy didn’t make much of a difference. At this point,
the overhead is fairly acceptable, but we still wanted to get the
Ada code to perform as well as the C implementation.

4.2 Storing pointers
As noted in Section 3.1, we elected to store indices into arrays
rather than pointer elements because we needed to keep track both
of the element as well as its index. After profiling, we discovered
(not surprisingly) that the loop containing the code at the end of
Section 3.1 ran slightly slower. This is because each reference to

the signals array requires an addition to a pointer. To solve this,
we decided to store both the indices and pointers directly to the
elements. Once we did this, the Ada code ran in the same amount
of time as the C code.

Table 3: Timings for 1400 iterations (all changes)

Compiler Time Overhead

gcc (-O2) 100 secs 0%

gnat (–O2 –gnatp
-gnatN)

100 secs 0%

To make the comparison fair, we also added an array of indices to
the C code (to avoid having to do the pointer subtraction). This
showed no appreciable change in the timing of the C code.

4.3 File I/O
Since we generally run the program for many hours, the extra
eight seconds of File I/O at the start was not a big concern.
However, we nonetheless pursued the question of how to get the
Ada code to do I/O faster. We first considered using
Ada.Streams. The default Stream’Read in Ada would expect to
read the bounds of an unconstrained array, then its elements. The
bounds weren’t present in our data files. Since we wanted to
maintain the file format of the C program, and we didn’t want to
go to the trouble of implementing our own stream reader, we
chose instead to use the Interface.C_Streams package provided by
GNAT. Since we were already using GNAT-specific routines for
clearing and copying arrays, this seemed like a reasonable design

choice. It involved a very straightforward translation of the C I/O
routines. Once completed, the I/O section took less than a
second, as did the C version.

5. CONCLUSIONS
Although Ada often has a reputation of being less efficient than
C, we discovered that with a small amount of work (less than one
man-day of effort for 1226 non-comment non-blank lines of
code), we were able to generate an Ada program that was just as
efficient as C. Furthermore, we uncovered a subtle bug in the C
program, where it was writing one byte past the end of an array.

Consequently, we conclude that Ada provides superior safety to
C, while maintaining a similar level of performance.

6. REFERENCES
[1] Tennebo, Frode. (December, 2000). Elegance of Java and the

Efficiency of C—It’s Ada. Linux Journal. [Online].
Available: http://www.linuxjournal.com/article/4342.

[2] Weiskirchner, Marcus. (September, 2003). Comparison of
the Execution Times of Ada, C and Java. [Online].
Available:
http://www.aicas.com/info/EADS_benchmark_language_co
mparison.pdf.

[3] Corlan, A. D. “Language Benchmarks.” [Online]. Available:
http://dan.corlan.net/bench.html.

[4] Kuhn, Markus. “Markus Kuhn’s Ada95 page.” [Online].
Available: http://www.cl.cam.ac.uk/~mgk25/ada.html.

